I have a dynamic panel of 113 countries for 27 year, and I am using the system-GMM estimation. I use the code:
Code:
xtabond2 gdpg l.gdpg school invest popl gs gc agd purge revolt assas gw ic et rt yr*, gmm(l.gdpg school invest popl gs gc agd purge revolt assas gw ic et rt, laglimit (1 2) eq(diff) collapse) gmm(l.gdpg school invest popl gs gc agd purge revolt assas gw ic et rt, laglimit(1 1) eq(level) collapse ) iv(yr*, eq(level)) twostep robust orthogonal small
Code:
Dynamic panel-data estimation, two-step system GMM ------------------------------------------------------------------------------ Group variable: id Number of obs = 1889 Time variable : t Number of groups = 101 Number of instruments = 68 Obs per group: min = 1 F(39, 100) = 36.05 avg = 18.70 Prob > F = 0.000 max = 26 ------------------------------------------------------------------------------ | Corrected gdpg | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- gdpg | L1. | .2960709 .0543676 5.45 0.000 .1882071 .4039348 | school | -.0040435 .0124473 -0.32 0.746 -.0287386 .0206515 invest | .1367087 .0499446 2.74 0.007 .0376202 .2357973 popl | -.5880374 .2726993 -2.16 0.033 -1.129065 -.0470097 gs | -.3794889 .2463908 -1.54 0.127 -.8683213 .1093434 gc | -.8519153 .3225023 -2.64 0.010 -1.491751 -.2120799 agd | -.0321581 .0485595 -0.66 0.509 -.1284987 .0641825 purge | .0580827 .2926748 0.20 0.843 -.5225757 .6387411 revolt | .1263746 .4156423 0.30 0.762 -.6982479 .9509971 assas | .0611081 .0599711 1.02 0.311 -.0578728 .1800889 gw | .0718747 .0280384 2.56 0.012 .0162473 .1275021 ic | .2486816 .2351381 1.06 0.293 -.2178256 .7151889 et | .1095639 .3872726 0.28 0.778 -.6587739 .8779017 rt | .1094858 .3044316 0.36 0.720 -.4944979 .7134694 yr_2 | 1.260909 .6875653 1.83 0.070 -.1032015 2.625019 yr_3 | 1.008915 .8446418 1.19 0.235 -.6668299 2.684661 yr_4 | .6752313 .7822947 0.86 0.390 -.8768191 2.227282 yr_5 | 1.037699 .7106692 1.46 0.147 -.3722486 2.447646 yr_6 | .921716 .8239169 1.12 0.266 -.7129117 2.556344 yr_7 | -.0508602 .9714175 -0.05 0.958 -1.978125 1.876404 yr_8 | .6293482 .7320509 0.86 0.392 -.82302 2.081716 yr_9 | 1.669619 .7356754 2.27 0.025 .2100595 3.129178 yr_10 | .6720811 .5619203 1.20 0.235 -.4427528 1.786915 yr_11 | .8680971 .577282 1.50 0.136 -.2772139 2.013408 yr_12 | 1.071278 .6431222 1.67 0.099 -.2046578 2.347214 yr_13 | 2.414394 .5913079 4.08 0.000 1.241256 3.587532 yr_14 | 1.816109 .4850552 3.74 0.000 .8537729 2.778444 yr_15 | 2.024707 .4181252 4.84 0.000 1.195159 2.854256 yr_16 | 1.96759 .43334 4.54 0.000 1.107855 2.827324 yr_18 | -3.516978 .6232903 -5.64 0.000 -4.753569 -2.280388 yr_19 | 3.040113 .6611827 4.60 0.000 1.728345 4.35188 yr_20 | .9749902 .6439827 1.51 0.133 -.3026531 2.252634 yr_21 | .5292614 .5967165 0.89 0.377 -.6546072 1.71313 yr_22 | .8616863 .6647106 1.30 0.198 -.4570806 2.180453 yr_23 | 1.429101 .6963924 2.05 0.043 .0474787 2.810724 yr_24 | 1.54518 .7890851 1.96 0.053 -.0203422 3.110702 yr_25 | .9606144 .7685481 1.25 0.214 -.564163 2.485392 yr_26 | 1.369836 .6666083 2.05 0.042 .0473043 2.692368 yr_27 | 1.355063 .7153157 1.89 0.061 -.0641025 2.774229 _cons | -4.633039 3.427836 -1.35 0.180 -11.43377 2.16769 ------------------------------------------------------------------------------ Instruments for orthogonal deviations equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/2).(L.gdpg school invest popl gs gc agd purge revolt assas gw ic et rt) collapsed Instruments for levels equation Standard yr_1 yr_2 yr_3 yr_4 yr_5 yr_6 yr_7 yr_8 yr_9 yr_10 yr_11 yr_12 yr_13 yr_14 yr_15 yr_16 yr_17 yr_18 yr_19 yr_20 yr_21 yr_22 yr_23 yr_24 yr_25 yr_26 yr_27 _cons GMM-type (missing=0, separate instruments for each period unless collapsed) DL.(L.gdpg school invest popl gs gc agd purge revolt assas gw ic et rt) collapsed ------------------------------------------------------------------------------ Arellano-Bond test for AR(1) in first differences: z = -4.74 Pr > z = 0.000 Arellano-Bond test for AR(2) in first differences: z = 0.52 Pr > z = 0.600 ------------------------------------------------------------------------------ Sargan test of overid. restrictions: chi2(28) = 129.13 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(28) = 40.74 Prob > chi2 = 0.057 (Robust, but weakened by many instruments.)
I also tried further lags, it does solve the Hansen problem but it made all the variable insignificant so I dont think it is a good option.
Thank you for helping me.
Best,
Annika
0 Response to Problem on Hansen test for over identifying restriction (system-GMM)
Post a Comment