I have a dynamic panel of 113 countries for 27 year, and I am using the system-GMM estimation. I use the code:
Code:
xtabond2 gdpg l.gdpg school invest popl gs gc agd purge revolt assas gw ic et rt yr*, gmm(l.gdpg school invest popl gs gc agd purge revolt assas gw ic et rt, laglimit (1 2) eq(diff) collapse) gmm(l.gdpg school invest popl gs gc agd purge revolt assas gw ic et rt, laglimit(1 1) eq(level) collapse ) iv(yr*, eq(level)) twostep robust orthogonal small
Code:
Dynamic panel-data estimation, two-step system GMM
------------------------------------------------------------------------------
Group variable: id Number of obs = 1889
Time variable : t Number of groups = 101
Number of instruments = 68 Obs per group: min = 1
F(39, 100) = 36.05 avg = 18.70
Prob > F = 0.000 max = 26
------------------------------------------------------------------------------
| Corrected
gdpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
gdpg |
L1. | .2960709 .0543676 5.45 0.000 .1882071 .4039348
|
school | -.0040435 .0124473 -0.32 0.746 -.0287386 .0206515
invest | .1367087 .0499446 2.74 0.007 .0376202 .2357973
popl | -.5880374 .2726993 -2.16 0.033 -1.129065 -.0470097
gs | -.3794889 .2463908 -1.54 0.127 -.8683213 .1093434
gc | -.8519153 .3225023 -2.64 0.010 -1.491751 -.2120799
agd | -.0321581 .0485595 -0.66 0.509 -.1284987 .0641825
purge | .0580827 .2926748 0.20 0.843 -.5225757 .6387411
revolt | .1263746 .4156423 0.30 0.762 -.6982479 .9509971
assas | .0611081 .0599711 1.02 0.311 -.0578728 .1800889
gw | .0718747 .0280384 2.56 0.012 .0162473 .1275021
ic | .2486816 .2351381 1.06 0.293 -.2178256 .7151889
et | .1095639 .3872726 0.28 0.778 -.6587739 .8779017
rt | .1094858 .3044316 0.36 0.720 -.4944979 .7134694
yr_2 | 1.260909 .6875653 1.83 0.070 -.1032015 2.625019
yr_3 | 1.008915 .8446418 1.19 0.235 -.6668299 2.684661
yr_4 | .6752313 .7822947 0.86 0.390 -.8768191 2.227282
yr_5 | 1.037699 .7106692 1.46 0.147 -.3722486 2.447646
yr_6 | .921716 .8239169 1.12 0.266 -.7129117 2.556344
yr_7 | -.0508602 .9714175 -0.05 0.958 -1.978125 1.876404
yr_8 | .6293482 .7320509 0.86 0.392 -.82302 2.081716
yr_9 | 1.669619 .7356754 2.27 0.025 .2100595 3.129178
yr_10 | .6720811 .5619203 1.20 0.235 -.4427528 1.786915
yr_11 | .8680971 .577282 1.50 0.136 -.2772139 2.013408
yr_12 | 1.071278 .6431222 1.67 0.099 -.2046578 2.347214
yr_13 | 2.414394 .5913079 4.08 0.000 1.241256 3.587532
yr_14 | 1.816109 .4850552 3.74 0.000 .8537729 2.778444
yr_15 | 2.024707 .4181252 4.84 0.000 1.195159 2.854256
yr_16 | 1.96759 .43334 4.54 0.000 1.107855 2.827324
yr_18 | -3.516978 .6232903 -5.64 0.000 -4.753569 -2.280388
yr_19 | 3.040113 .6611827 4.60 0.000 1.728345 4.35188
yr_20 | .9749902 .6439827 1.51 0.133 -.3026531 2.252634
yr_21 | .5292614 .5967165 0.89 0.377 -.6546072 1.71313
yr_22 | .8616863 .6647106 1.30 0.198 -.4570806 2.180453
yr_23 | 1.429101 .6963924 2.05 0.043 .0474787 2.810724
yr_24 | 1.54518 .7890851 1.96 0.053 -.0203422 3.110702
yr_25 | .9606144 .7685481 1.25 0.214 -.564163 2.485392
yr_26 | 1.369836 .6666083 2.05 0.042 .0473043 2.692368
yr_27 | 1.355063 .7153157 1.89 0.061 -.0641025 2.774229
_cons | -4.633039 3.427836 -1.35 0.180 -11.43377 2.16769
------------------------------------------------------------------------------
Instruments for orthogonal deviations equation
GMM-type (missing=0, separate instruments for each period unless collapsed)
L(1/2).(L.gdpg school invest popl gs gc agd purge revolt assas gw ic et
rt) collapsed
Instruments for levels equation
Standard
yr_1 yr_2 yr_3 yr_4 yr_5 yr_6 yr_7 yr_8 yr_9 yr_10 yr_11 yr_12 yr_13 yr_14
yr_15 yr_16 yr_17 yr_18 yr_19 yr_20 yr_21 yr_22 yr_23 yr_24 yr_25 yr_26
yr_27
_cons
GMM-type (missing=0, separate instruments for each period unless collapsed)
DL.(L.gdpg school invest popl gs gc agd purge revolt assas gw ic et rt)
collapsed
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z = -4.74 Pr > z = 0.000
Arellano-Bond test for AR(2) in first differences: z = 0.52 Pr > z = 0.600
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(28) = 129.13 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(28) = 40.74 Prob > chi2 = 0.057
(Robust, but weakened by many instruments.)I also tried further lags, it does solve the Hansen problem but it made all the variable insignificant so I dont think it is a good option.
Thank you for helping me.
Best,
Annika
0 Response to Problem on Hansen test for over identifying restriction (system-GMM)
Post a Comment