Hi, I am quite new in regression, still trying to learn. Initially, i use five independent variables, and after showing to my supervisor, he asked me to add more variables but as sensitivity check so I don't need to redo the whole thing.

I am wondering if it makes sense to add my additional three variables as sensitivity check, as I normally read papers that only change one variables or so when doing sensitivity check.

If yes, then how do I interpret the outcome of the new addition? Does that mean my model is robust? Thank you



Code:
 . reg mtd prof size tang growth liq dc1 dc2 dc3 dc4 i.industry i.year, vce(robust)

Linear regression                               Number of obs     =      4,820
                                                F(27, 4792)       =      80.96
                                                Prob > F          =     0.0000
                                                R-squared         =     0.3569
                                                Root MSE          =     .18635

------------------------------------------------------------------------------
             |               Robust
         mtd |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        prof |  -.3832766   .0686802    -5.58   0.000    -.5179214   -.2486318
        size |   .0361722    .002791    12.96   0.000     .0307006    .0416438
        tang |   .1248675   .0183476     6.81   0.000     .0888977    .1608372
      growth |  -.0083867    .002782    -3.01   0.003    -.0138407   -.0029326
         liq |  -.0102962   .0036118    -2.85   0.004     -.017377   -.0032155
         dc1 |   .0615475   .0120496     5.11   0.000     .0379248    .0851702
         dc2 |   .0420181   .0074354     5.65   0.000     .0274413    .0565949
         dc3 |   .0213742    .008977     2.38   0.017     .0037751    .0389732
         dc4 |   .0781161   .0124258     6.29   0.000     .0537559    .1024763
             |
    industry |
       9991  |  -.0240652   .0212285    -1.13   0.257    -.0656827    .0175523
       9992  |    .044358   .0242483     1.83   0.067    -.0031799    .0918958
       9993  |   -.189325   .0237744    -7.96   0.000    -.2359337   -.1427163
       9994  |   .0256848   .0208052     1.23   0.217     -.015103    .0664726
       9995  |  -.1267229   .0254384    -4.98   0.000    -.1765938    -.076852
       9996  |    .069327   .0208692     3.32   0.001     .0284139    .1102402
       9997  |  -.0659017   .0222793    -2.96   0.003    -.1095794    -.022224
       9998  |  -.0668792   .0243165    -2.75   0.006    -.1145507   -.0192076
       9999  |  -.0184298   .0227901    -0.81   0.419    -.0631089    .0262493
             |
        year |
       2009  |  -.0585273   .0127497    -4.59   0.000    -.0835225   -.0335321
       2010  |  -.0834637   .0124864    -6.68   0.000    -.1079427   -.0589847
       2011  |  -.0741264   .0125177    -5.92   0.000    -.0986667    -.049586
       2012  |  -.0744085    .012312    -6.04   0.000    -.0985456   -.0502714
       2013  |  -.1149802   .0122686    -9.37   0.000    -.1390323   -.0909281
       2014  |  -.1233646   .0124957    -9.87   0.000    -.1478619   -.0988673
       2015  |  -.1275209   .0127533   -10.00   0.000    -.1525233   -.1025186
       2016  |  -.1244362   .0129507    -9.61   0.000    -.1498255   -.0990469
       2017  |   -.132976    .012769   -10.41   0.000    -.1580091   -.1079429
             |
       _cons |   .0279881   .0510031     0.55   0.583    -.0720014    .1279777
------------------------------------------------------------------------------
Code:
 . reg mtd prof size tang growth liq dividendpayout ntds intcoverage dc1 dc2 dc3 dc4 i.industry i.year, vce(robust)

Linear regression                               Number of obs     =      4,820
                                                F(30, 4789)       =      75.58
                                                Prob > F          =     0.0000
                                                R-squared         =     0.3601
                                                Root MSE          =     .18593

--------------------------------------------------------------------------------
               |               Robust
           mtd |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
---------------+----------------------------------------------------------------
          prof |  -.3903113   .0725805    -5.38   0.000    -.5326024   -.2480202
          size |   .0354715   .0028602    12.40   0.000     .0298643    .0410787
          tang |   .1397064   .0171498     8.15   0.000     .1060849     .173328
        growth |  -.0078057   .0028427    -2.75   0.006    -.0133787   -.0022327
           liq |  -.0104448   .0036926    -2.83   0.005     -.017684   -.0032056
dividendpayout |  -.0018741   .0010861    -1.73   0.085    -.0040034    .0002552
          ntds |  -.3816906   .1609167    -2.37   0.018    -.6971612     -.06622
   intcoverage |  -1.42e-06   1.22e-06    -1.16   0.246    -3.81e-06    9.78e-07
           dc1 |   .0564218   .0129878     4.34   0.000     .0309596    .0818839
           dc2 |   .0397018   .0076943     5.16   0.000     .0246175    .0547861
           dc3 |    .019007   .0089529     2.12   0.034     .0014553    .0365588
           dc4 |    .074056    .012708     5.83   0.000     .0491424    .0989696
               |
      industry |
         9991  |  -.0253018   .0210576    -1.20   0.230    -.0665843    .0159807
         9992  |   .0452068   .0240588     1.88   0.060    -.0019594     .092373
         9993  |  -.1899307   .0236659    -8.03   0.000    -.2363267   -.1435348
         9994  |   .0250902   .0206563     1.21   0.225    -.0154057    .0655861
         9995  |  -.1287157   .0254462    -5.06   0.000    -.1786019   -.0788295
         9996  |   .0628662    .020813     3.02   0.003     .0220633    .1036692
         9997  |  -.0576092    .022123    -2.60   0.009    -.1009805   -.0142379
         9998  |  -.0559507    .024707    -2.26   0.024    -.1043879   -.0075136
         9999  |  -.0166227   .0226275    -0.73   0.463    -.0609829    .0277375
               |
          year |
         2009  |  -.0591305   .0127057    -4.65   0.000    -.0840396   -.0342214
         2010  |  -.0841003   .0124556    -6.75   0.000     -.108519   -.0596816
         2011  |  -.0743277    .012466    -5.96   0.000    -.0987668   -.0498887
         2012  |  -.0741434    .012242    -6.06   0.000    -.0981434   -.0501435
         2013  |  -.1163413   .0121812    -9.55   0.000    -.1402221   -.0924605
         2014  |  -.1243697   .0123403   -10.08   0.000    -.1485625    -.100177
         2015  |  -.1280807   .0126523   -10.12   0.000     -.152885   -.1032764
         2016  |  -.1253472   .0128311    -9.77   0.000    -.1505021   -.1001923
         2017  |  -.1342228   .0126918   -10.58   0.000    -.1591047    -.109341
               |
         _cons |   .0459086   .0528146     0.87   0.385    -.0576323    .1494496