Hi i am running a tobit regresison for data across 2 years 2007-2008:
My variables include 10 log price categories for alcohol types on trade and off trade : l_p_wine_on l_p_wine_off etc
I also have a log income variable : log_income
My dependent variables are the expenditure shares of the alcohol type expenditure divided by total expenditure : e.g exp_share_wine_on expshare_wine_off
I am looking at the price elasticities of demand and the cross price elasticities of demand vary across each alcohol type and vary across socio-economic groups, government regions and gender

My prices for alcohols are constant throughout the year (i am using the average year price) however they vary between years

here is a data-ex for some of my variables
Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input float(l_p_wine_on l_p_beer_on l_p_spirits_on l_p_wine_off l_p_spirits_off
>  l_p_beer_off expshare_wine_on expshare_beer_off logincome) byte(socio_group 
> gor) int year byte sexhrp
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  4.433789 6 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0   .01142119 
>  5.898746 3 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  4.898213 6 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584    .0550356  .015000853 
>  6.399842 1 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0 .0016348386 
>  5.584012 3 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0  .015073973 
>  7.020905 2 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  5.225338 6 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  4.911331 3 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  5.219934 6 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  5.533279 6 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
> 4.2492094 6 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0   .00609936 
>  6.168564 6 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  4.835587 6 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  5.940566 6 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0  .006249688 
>  5.331317 6 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  5.786775 6 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0  .003858888 
>  7.201894 2 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  6.476967 2 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  5.009435 6 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0  .010382757 
>  6.377679 3 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  5.982862 6 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>   6.11283 2 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0 .0023888294 
>  6.279646 6 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0  .001813489 
>  6.294915 1 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0  .005435922 
>  6.704463 1 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  6.747566 3 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0  .005957043 
>   6.11456 1 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584  .014408222  .016718158 
>  6.605068 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584  .018981254           0 
>  6.019785 1 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  6.088818 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  4.779476 6 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0  .008590408 
>  6.514719 6 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584  .005628793  .018012136 
>  6.960443 1 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0  .005657709 
>  6.424075 3 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  5.920457 6 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584  .008473212           0 
>  6.898255 1 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0   .02177079 
>  5.623837 6 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  4.812526 6 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  6.182973 1 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  4.514611 6 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  6.109314 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  5.362559 3 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>   5.30903 6 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>   5.26414 6 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
> 4.3593974 3 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584  .017695729           0 
>   4.77104 6 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  5.069847 6 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0   .01336186 
>  6.690271 2 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>   5.80408 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  6.628306 5 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0  .016276948 
>  6.522627 5 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  5.519619 6 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0  .035966147 
>  6.422951 3 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  6.557673 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  6.602438 2 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  6.402017 3 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584 .0029820926           0 
>  7.401286 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0  .015186014 
>  7.176426 2 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  5.746554 6 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  5.474176 6 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0   .01607261 
>  6.874416 3 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0  .010095213 
>  6.662046 1 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584  .024986824    .0423164 
>  6.069906 3 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584  .001250104           0 
>  7.438652 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584   .03693495           0 
>  7.021414 1 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0   .02268917 
>    6.5658 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  6.958667 2 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  6.192117 1 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584 .0016070686           0 
>  5.815264 6 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>   5.34921 6 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>     6.279 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  5.516609 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  5.554516 6 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  6.347932 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584   .01880577           0 
>   5.93925 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0   .07133046 
>  6.985651 2 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584  .005728897  .005415315 
>   7.12227 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584   .01053234  .021376746 
>    6.8088 2 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584 .0019776237           0 
>  6.519822 3 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  6.490757 6 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  6.787439 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  6.457868 1 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  6.921752 2 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  7.098411 2 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  4.400603 6 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584  .013181653           0 
>  6.857086 1 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584  .003744323           0 
>  6.710182 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  6.136498 6 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584   .02200635           0 
>  7.438652 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584 .0019496685           0 
>  6.911319 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0 .0006786454 
>  6.854755 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  7.438652 2 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  6.609726 1 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584  .004789272           0 
>  6.868133 3 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  5.182907 4 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  5.823194 1 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  4.812526 6 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0   .04808098 
>  5.530222 4 2 2007 2
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0           0 
>  5.793585 3 2 2007 1
.60158 -.010050327 .662688 -.9416085 -.967584 -.967584           0   .11235794 
>  6.436151 1 2 2007 2
end
label values gor gor
label def gor 2 "north west", modify
label values sexhrp sexhrp
label def sexhrp 1 "male", modify
label def sexhrp 2 "female", modify
I am then running a tobit regression as follows:

Code:
 tobit expshare_wine_on l_p_wine_on l_p_beer_on l_p_cider_on l_p_spirits_on l_p_alcopops_on l_p_wine_off l_p_beer_off l_p_spirits_off l_p_cider_off l_p_alcopops_off logincome i.socio_group i.gor i.year i.sexhrp , ll(0)
I have censored the data at zero since some households report no consumption of alcohol

However my results are as follows:
Code:
. tobit expshare_wine_on l_p_wine_on l_p_beer_on l_p_cider_on l_p_spirits_on l_p_alcopops_on l_p_wine_off
>  l_p_beer_off l_p_spirits_off l_p_cider_off l_p_alcopops_off logincome i.socio_group i.gor i.year i.sex
> hrp , ll(0)
note: l_p_beer_on omitted because of collinearity
note: l_p_cider_on omitted because of collinearity
note: l_p_spirits_on omitted because of collinearity
note: l_p_alcopops_on omitted because of collinearity
note: l_p_wine_off omitted because of collinearity
note: l_p_beer_off omitted because of collinearity
note: l_p_spirits_off omitted because of collinearity
note: l_p_cider_off omitted because of collinearity
note: l_p_alcopops_off omitted because of collinearity
note: 2008.year omitted because of collinearity

Refining starting values:

Grid node 0:   log likelihood = -5976.9775

Fitting full model:

Iteration 0:   log likelihood = -5976.9775  
Iteration 1:   log likelihood = -640.92644  
Iteration 2:   log likelihood =   1103.185  
Iteration 3:   log likelihood =  1808.8673  
Iteration 4:   log likelihood =  1909.2432  
Iteration 5:   log likelihood =   1910.562  
Iteration 6:   log likelihood =  1910.5625  
Iteration 7:   log likelihood =  1910.5625  

Tobit regression                                Number of obs     =     11,962
                                                   Uncensored     =      2,312
Limits: lower = 0                                  Left-censored  =      9,650
        upper = +inf                               Right-censored =          0

                                                LR chi2(14)       =     927.97
                                                Prob > chi2       =     0.0000
Log likelihood =  1910.5625                     Pseudo R2         =    -0.3207

-------------------------------------------------------------------------------------------
         expshare_wine_on |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
--------------------------+----------------------------------------------------------------
              l_p_wine_on |   -.028118   .0162136    -1.73   0.083    -.0598992    .0036632
              l_p_beer_on |          0  (omitted)
             l_p_cider_on |          0  (omitted)
           l_p_spirits_on |          0  (omitted)
          l_p_alcopops_on |          0  (omitted)
             l_p_wine_off |          0  (omitted)
             l_p_beer_off |          0  (omitted)
          l_p_spirits_off |          0  (omitted)
            l_p_cider_off |          0  (omitted)
         l_p_alcopops_off |          0  (omitted)
                logincome |   .0125922   .0006706    18.78   0.000     .0112778    .0139066
                          |
              socio_group |
                       2  |   .0014811   .0010997     1.35   0.178    -.0006745    .0036368
                       3  |  -.0078991   .0012672    -6.23   0.000    -.0103829   -.0054152
                       4  |  -.0098159    .003836    -2.56   0.011    -.0173351   -.0022968
                       5  |   .0065436   .0035439     1.85   0.065    -.0004031    .0134903
                       6  |  -.0027114   .0010429    -2.60   0.009    -.0047556   -.0006672
                          |
                      gor |
              north west  |  -.0004291   .0014892    -0.29   0.773    -.0033481      .00249
              merseyside  |  -.0009579   .0014654    -0.65   0.513    -.0038303    .0019145
yorkshire and the humber  |   .0017352   .0014609     1.19   0.235    -.0011284    .0045987
           east midlands  |  -.0012567   .0021903    -0.57   0.566      -.00555    .0030366
           west midlands  |  -.0024181   .0018331    -1.32   0.187    -.0060112    .0011751
                 eastern  |  -.0016493   .0017609    -0.94   0.349     -.005101    .0018023
                          |
                     year |
                    2008  |          0  (omitted)
                          |
                   sexhrp |
                  female  |   .0011694    .000803     1.46   0.145    -.0004046    .0027435
                    _cons |  -.0853166   .0110156    -7.75   0.000     -.106909   -.0637242
--------------------------+----------------------------------------------------------------
   var(e.expshare_wine_on)|   .0007865   .0000268                      .0007357    .0008408
------------------------------------------------------------------------------------------
Q1. Why are my price variables other than the price of the same dependent variable omitted (as i am trying to work out cross price elasticity of demand) i understand its due to collinearity but what is causing this and how do i overcome it?
Q2. Why is the year dummy variable omitted?

I am following a model which has done close to the same thing and they didn't have this problem

Thanks so much in advance