I'm trying to estimate GVC trade flows in a gravity model, using the PPML method. My dependent variable is the foreign value-added in exports, from the UNCTAD-Eora database. I have used country-year fixed effects, alongside the normal gravity variables. I've attached my code below, where exp stands for the final exporter and org stands for the origin country. What I want to do now, is regress the fixed effects for the origin and final exporter separately, on variables that have emerged as significant in the literature on bilateral value-added trade flows (eg, institutions, GDP, tariffs, etc). But I don't know what the Stata code for that is. How should I proceed after the initial PPML estimation?
I'm following Ignatenko et al (2019) [https://www.elibrary.imf.org/doc/IMF...&redirect=true) for the methodology.
Code:
ppmlhdfe fva_exp lndistw contig comlang_off comcol col45 rta, a(exp#year org#year)
warning: dependent variable takes very low values after standardizing (6.4737e-11)
Iteration 1: deviance = 9.6995e+10 eps = . iters = 6 tol = 1.0e-04 min(eta) = -6.08
> P
Iteration 2: deviance = 4.3247e+10 eps = 1.24e+00 iters = 4 tol = 1.0e-04 min(eta) = -7.65
>
Iteration 3: deviance = 2.5557e+10 eps = 6.92e-01 iters = 4 tol = 1.0e-04 min(eta) = -9.23
>
Iteration 4: deviance = 1.9873e+10 eps = 2.86e-01 iters = 4 tol = 1.0e-04 min(eta) = -10.73
>
Iteration 5: deviance = 1.8312e+10 eps = 8.52e-02 iters = 4 tol = 1.0e-04 min(eta) = -12.61
>
Iteration 6: deviance = 1.7956e+10 eps = 1.98e-02 iters = 3 tol = 1.0e-04 min(eta) = -14.42
>
Iteration 7: deviance = 1.7892e+10 eps = 3.58e-03 iters = 3 tol = 1.0e-04 min(eta) = -16.21
>
Iteration 8: deviance = 1.7884e+10 eps = 4.66e-04 iters = 2 tol = 1.0e-04 min(eta) = -18.00
>
Iteration 9: deviance = 1.7883e+10 eps = 4.78e-05 iters = 2 tol = 1.0e-04 min(eta) = -19.53
>
Iteration 10: deviance = 1.7883e+10 eps = 6.54e-06 iters = 2 tol = 1.0e-05 min(eta) = -20.70
>
Iteration 11: deviance = 1.7883e+10 eps = 1.45e-06 iters = 2 tol = 1.0e-06 min(eta) = -21.76
> S
Iteration 12: deviance = 1.7883e+10 eps = 3.63e-07 iters = 2 tol = 1.0e-06 min(eta) = -22.76
> S
Iteration 13: deviance = 1.7883e+10 eps = 1.11e-07 iters = 2 tol = 1.0e-07 min(eta) = -23.75
> S
Iteration 14: deviance = 1.7883e+10 eps = 3.99e-08 iters = 2 tol = 1.0e-07 min(eta) = -24.75
> S
Iteration 15: deviance = 1.7883e+10 eps = 1.44e-08 iters = 2 tol = 1.0e-09 min(eta) = -25.73
> S
Iteration 16: deviance = 1.7883e+10 eps = 5.01e-09 iters = 2 tol = 1.0e-09 min(eta) = -26.68
> S O
-----------------------------------------------------------------------------------------------------
> -------
(legend: p: exact partial-out s: exact solver h: step-halving o: epsilon below tolerance)
Converged in 16 iterations and 46 HDFE sub-iterations (tol = 1.0e-08)
HDFE PPML regression No. of obs = 802,332
Absorbing 2 HDFE groups Residual df = 793,351
Wald chi2(6) = 31094.63
Deviance = 1.78829e+10 Prob > chi2 = 0.0000
Log pseudolikelihood = -8944656317 Pseudo R2 = 0.9761
------------------------------------------------------------------------------
| Robust
fva_exp | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lndistw | -.5843399 .0073831 -79.15 0.000 -.5988106 -.5698692
contig | .3025254 .0141269 21.41 0.000 .2748372 .3302136
comlang_off | .1464696 .013473 10.87 0.000 .1200629 .1728762
comcol | -.0186726 .0236985 -0.79 0.431 -.0651208 .0277756
col45 | .311416 .0278558 11.18 0.000 .2568196 .3660123
rta | .2799979 .0130889 21.39 0.000 .2543441 .3056518
_cons | 19.79964 .065346 303.00 0.000 19.67156 19.92772
------------------------------------------------------------------------------
Absorbed degrees of freedom:
-----------------------------------------------------+
Absorbed FE | Categories - Redundant = Num. Coefs |
-------------+---------------------------------------|
exp#year | 4500 0 4500 |
org#year | 4500 25 4475 |
-----------------------------------------------------+Saunok
0 Response to Gravity model estimation using PPML with fixed effects
Post a Comment