Hello,

I would like to use margins in a similar way as we can use predict after regression (e.g. predict yhat, xb). I know that before margins function we had the "adjust" that allowed to do so, but it does not work well with what I want to do. I also saw a post previously but it also does not seem to work for me. I have OLS regression and would like to see how the predictions change for different income deciles. I want to use margins to predict more accurately EF_food for missing values in dataset_id=USS and I was hoping that if I include income deciles I can obtain more accurate predictions.

Thanks in advance!

Code:
reg EF_food j_fihhmngrs_dv i.j_nkids015 i.owned_outright i.owned_outright i.non_white if dataset_id==0 [aweight=weighta]

  margins, over ( decile_USS_LCF)
Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input float(dataset_id EF_food) double j_fihhmngrs_dv float(j_nkids015 owned_outright non_white) double weighta float decile_USS_LCF
0  .7816824  826.0210571289063 0 0 0  11.83271786805351  1
0   3.66914    678.81982421875 0 1 0  2.333911690268645  1
0  9.756257  3064.186767578125 0 0 0   5.35219072413753  6
0  6.830635    4587.7001953125 0 0 0  8.620880305885088  8
0  13.15235 1337.4217529296875 0 1 0  6.508487471455665  2
0  2.003386  710.8319702148438 0 0 0 1.8111698165541175  1
0  3.253308     962.9521484375 0 0 0 2.7187062059916376  1
0 1.6621974  1602.163330078125 0 0 0  6.493507280305288  3
0 2.3308797      10117.7265625 0 0 0  7.061185763740903 10
0  9.121844 1096.9320068359375 0 0 0  7.241820829276195  1
0 11.114388    8800.2197265625 0 0 0  6.249359886951974 10
0  5.827403  863.0203857421875 0 0 0 3.9520102141043005  1
0 15.954617   1696.17138671875 0 0 0 4.4385118413355125  3
0  3.818949   5895.45654296875 0 0 0  5.081123604047845  9
0  2.501838   849.511474609375 0 0 0  5.980489477011162  1
0 2.9492335 1278.5965576171875 0 0 0 6.4580342551338825  2
0  3.628804  324.4366760253906 0 0 0  4.821034487344665  1
0 .36062685   5522.05322265625 0 0 0 7.0857207016562676  8
0  5.795914  3971.110107421875 1 0 0  4.280514643245957  7
0  3.158304  2242.811279296875 0 0 0 2.0613489931909776  4
0  8.033847 1787.9705810546875 0 0 0 4.2769254887038874  3
0 12.100324   2700.04736328125 0 0 0   4.48452865950731  5
0 2.3342412   2328.28564453125 0 0 0 3.4258469310716726  4
0  .5865059 1103.3726806640625 0 0 0 2.8930818114269825  1
0 .25883174 1493.4503173828125 0 0 0 11.224903063313976  2
0  6.993412  2327.086669921875 0 0 0  4.809965179497527  4
0  4.513049    2555.2958984375 0 1 0   4.88047136833043  5
0  6.761583    854.72314453125 0 0 0  5.183871721416855  1
0  9.515974 1536.6866455078125 0 1 0  5.690553732551048  2
0  2.787873 1831.7501220703125 0 0 0   6.19311367148626  3
0 12.202604  403.0086669921875 0 0 0  3.493125463869895  1
0  7.578351  2685.490966796875 0 0 0  5.622038753169735  5
0 3.6461945  1073.587646484375 0 0 0  2.169663514453735  1
0  6.538309  2305.312255859375 0 0 0   6.00395526669353  4
0  9.844992       1038.5703125 0 0 0  2.316906265114321  1
0  9.886992  1694.618896484375 0 0 0  5.269973837753337  3
0   3.84432     6867.943359375 0 0 0  9.097116285030578  9
0  .7494648   1122.04931640625 0 0 0  2.366565116606875  1
0 17.791197    2305.0810546875 0 0 0  2.423740469692785  4
0  4.813661 1963.1041259765625 0 0 0 3.4612991347916426  3
0  7.142865    1829.5869140625 0 1 0   3.01800853863535  3
0  15.94225    6244.5498046875 2 0 0  6.173815626085214  9
0  9.190422  3265.743896484375 0 1 0 3.9502903418757374  6
0  8.352653    778.81103515625 0 1 0   5.24925204529951  1
0  3.105875    2597.5439453125 0 0 0  9.037633229860162  5
0 4.0008373 1989.6500244140625 0 0 0 2.4543373675936926  4
0  8.984796   4685.72021484375 0 0 0  4.961643893675633  8
0  9.126013  2158.043212890625 0 0 0 5.6670980004740175  4
0 19.442034   1924.17333984375 0 0 0  4.312050181919328  3
0  6.700543   3447.25341796875 0 1 0  4.129980354960195  6
0  3.018616     1062.580078125 0 0 0   6.84168868164691  1
0 14.819835   6125.51318359375 0 0 0  2.011365562753375  9
0 4.0069394 1052.9317626953125 0 0 0  9.189508761274693  1
0  1.823555  1839.066650390625 0 0 0 4.7651286699287025  3
0  21.92558   2613.78662109375 1 0 0  5.652018818139457  5
0  7.694699   2248.69677734375 3 0 1 4.1114755811064025  4
0 13.173983   3690.43994140625 0 0 1 3.9597450341387823  7
0  6.350592    4685.2001953125 0 0 1   9.34250509649158  8
0 17.173487 1841.6666259765625 3 0 1  5.097459516742985  3
0 24.291676                  0 0 0 1    7.8130770219866  1
0  3.764162  2448.376708984375 0 0 1  7.998285143734138  5
0 1.4949176   10790.5634765625 0 0 1   7.42569770840796 10
1         .  680.3300170898438 0 1 0                  .  1
1         .  916.6699829101563 0 0 0                  .  1
1         .     3476.669921875 0 1 0                  .  7
1         .               3500 0 0 0                  .  7
1         .    11920.490234375 0 0 0                  . 10
1         .  320.6700134277344 0 0 0                  .  1
1         .  2263.340087890625 0 0 0                  .  5
1         .  2274.969970703125 0 0 0                  .  5
1         .    16984.759765625 0 1 0                  . 10
1         .      6367.16015625 0 0 0                  .  9
1         . 1120.1800537109375 0 0 0                  .  2
1         . 1543.8399658203125 0 1 0                  .  3
1         .   8027.60009765625 0 0 0                  . 10
1         .     2166.669921875 0 0 0                  .  4
1         .    982.52001953125 0 0 0                  .  1
1         .     3370.830078125 0 0 0                  .  7
1         .  908.5800170898438 0 0 0                  .  1
1         .                640 0 1 0                  .  1
1         .    3643.7900390625 0 0 0                  .  7
1         .   3302.43994140625 0 0 0                  .  6
1         .   4699.89990234375 0 0 0                  .  8
1         .  1493.050048828125 0 0 0                  .  3
1         .  2116.489990234375 0 1 0                  .  4
1         .  1986.030029296875 2 0 0                  .  4
1         .                650 0 1 0                  .  1
1         .   5511.39013671875 0 0 0                  .  9
1         .       8550.6796875 1 0 0                  . 10
1         .   5242.43994140625 2 0 0                  .  9
1         . 1934.6700439453125 0 0 0                  .  4
1         .    2074.8701171875 2 0 0                  .  4
1         .   5512.97021484375 0 0 0                  .  9
1         .   5693.97021484375 2 0 0                  .  9
1         .                859 0 0 0                  .  1
1         .    4658.6201171875 0 1 0                  .  8
1         .    2148.8701171875 0 0 0                  .  4
1         .  518.9199829101563 0 0 0                  .  1
1         .     2101.669921875 0 0 0                  .  4
1         .            6651.25 0 1 0                  .  9
end
label values dataset_id dataset_id
label def dataset_id 0 "LCF", modify
label def dataset_id 1 "USS", modify
label values j_fihhmngrs_dv j_fihhmngrs_dv