Hello,

I am working with a large survey data (N=220,000). The survey asks how often people use reading and writing skills at work by asking 12 different questions. These are the 12 categorical variables G_Q* in the data enclosed below (with value levels). Sample weights are in the variable WT.

I want to make *one* index for the use of literacy skills at work using these 12 variables. The best method I could find online is making a principal components index using polychoric correlations. I do this using the following code. I also provide the output for completeness. While the code runs without error, producing a polychoric correlation matrix and executing the principal component analysis, I get a warning: "convergence not achieved". When I don't use sample weights [pw=WT], I no longer get this warning message.

Note: running the code on the data extract I provide below does not produce any warning. But the same code does produce a warning on the full data.
  1. I am new to PCA. What does it mean to not achieve convergence? What can I do to achieve convergence? What does this have to do with sampling weights?
  2. If convergence is not achieved, is the resulting PCA invalid?
  3. PCA with polychoric correlations is just one method I found online. Is there a better way to create *one* index from a high dimensional set of categorical variables, like in my example?
Any help would be really appreciated!

Thanks.

Code:
polychoricpca G_Q01A G_Q01B G_Q01C G_Q01D G_Q01E G_Q01F G_Q01G G_Q01H G_Q02A G_Q02B G_Q02C G_Q02D [pw=WT], score(pca) nscore(1) 

convergence not achieved

Polychoric correlation matrix

           G_Q01A     G_Q01B     G_Q01C     G_Q01D     G_Q01E
G_Q01A          1
G_Q01B  .55846902          1
G_Q01C  .42631142  .67224243          1
G_Q01D  .45070461  .65548802  .76658735          1
G_Q01E  .34250992  .45084042  .56178017  .59155061          1
G_Q01F  .59469005  .56052551  .49759875  .55588562  .53441044
G_Q01G  .27126738  .52399025  .42723118  .38754332  .23691087
G_Q01H  .47336072  .54266279  .45239904  .48713368  .37947737
G_Q02A  .45680246  .88212333  .60576374  .61159295  .43619415
G_Q02B  .25495252  .51072115  .53469256  .55277812  .48291761
G_Q02C  .42820831  .55988434  .42479452  .46075696  .38452038
G_Q02D  .47989936  .58308406  .39359131  .40248829  .29558057

           G_Q01F     G_Q01G     G_Q01H     G_Q02A     G_Q02B
G_Q01F          1
G_Q01G  .30743004          1
G_Q01H  .53347603  .34539894          1
G_Q02A  .50425125  .50169205  .50907761          1
G_Q02B  .34467389  .29900805  .36191432  .55356011          1
G_Q02C  .47497015  .28889701  .45570917  .60108939  .40060757
G_Q02D  .49022314  .38242366  .45735662  .57974156  .28189509

           G_Q02C     G_Q02D
G_Q02C          1
G_Q02D  .63773768          1

Principal component analysis

 k  |  Eigenvalues  |  Proportion explained  |  Cum. explained
----+---------------+------------------------+------------------
  1 |    6.330187   |    0.527516            |   0.527516
  2 |    1.104438   |    0.092037            |   0.619552
  3 |    0.925240   |    0.077103            |   0.696655
  4 |    0.728330   |    0.060694            |   0.757350
  5 |    0.548358   |    0.045697            |   0.803046
  6 |    0.535607   |    0.044634            |   0.847680
  7 |    0.451277   |    0.037606            |   0.885286
  8 |    0.386905   |    0.032242            |   0.917528
  9 |    0.337059   |    0.028088            |   0.945617
  10 |    0.326661  |    0.027222            |   0.972838
  11 |    0.225979  |    0.018832            |   0.991670
  12 |    0.099960  |    0.008330            |   1.000000

               Scoring coefficients

    Variable    |  Coeff. 1  |  Coeff. 2  |  Coeff. 3 
------------------------------------------------------
 G_Q01A        
             1  | -0.342112  | -0.413705  | -0.468062 
             2  | -0.129872  | -0.157050  | -0.177685 
             3  | -0.038684  | -0.046780  | -0.052926 
             4  |  0.058973  |  0.071314  |  0.080684 
             5  |  0.293034  |  0.354357  |  0.400915 
 G_Q01B        
             1  | -0.386800  | -0.060226  |  0.245954 
             2  | -0.130805  | -0.020367  |  0.083175 
             3  | -0.080628  | -0.012554  |  0.051269 
             4  | -0.011845  | -0.001844  |  0.007532 
             5  |  0.300556  |  0.046798  | -0.191114 
 G_Q01C        
             1  | -0.307872  |  0.323132  |  0.032328 
             2  | -0.045241  |  0.047483  |  0.004751 
             3  |  0.035355  | -0.037108  | -0.003712 
             4  |  0.155904  | -0.163632  | -0.016371 
             5  |  0.423643  | -0.444641  | -0.044485 
 G_Q01D        
             1  | -0.266657  |  0.261569  | -0.060142 
             2  |  0.041008  | -0.040225  |  0.009249 
             3  |  0.158926  | -0.155893  |  0.035844 
             4  |  0.322979  | -0.316816  |  0.072845 
             5  |  0.597503  | -0.586102  |  0.134761 
 G_Q01E        
             1  | -0.165424  |  0.251300  | -0.229450 
             2  |  0.124093  | -0.188514  |  0.172123 
             3  |  0.220295  | -0.334657  |  0.305558 
             4  |  0.310384  | -0.471513  |  0.430515 
             5  |  0.486489  | -0.739040  |  0.674781 
 G_Q01F        
             1  | -0.322755  | -0.130053  | -0.467717 
             2  | -0.052821  | -0.021284  | -0.076545 
             3  |  0.078669  |  0.031699  |  0.114003 
             4  |  0.217752  |  0.087742  |  0.315553 
             5  |  0.461859  |  0.186104  |  0.669297 
 G_Q01G        
             1  | -0.173600  | -0.042452  |  0.471671 
             2  |  0.033866  |  0.008282  | -0.092013 
             3  |  0.090740  |  0.022190  | -0.246540 
             4  |  0.163753  |  0.040045  | -0.444917 
             5  |  0.330233  |  0.080756  | -0.897243 
 G_Q01H        
             1  | -0.213112  | -0.131207  | -0.122083 
             2  |  0.051536  |  0.031729  |  0.029523 
             3  |  0.130155  |  0.080133  |  0.074560 
             4  |  0.221036  |  0.136085  |  0.126622 
             5  |  0.424630  |  0.261432  |  0.243252 
 G_Q02A        
             1  | -0.336591  | -0.041337  |  0.300412 
             2  | -0.074822  | -0.009189  |  0.066779 
             3  | -0.026465  | -0.003250  |  0.023620 
             4  |  0.044145  |  0.005422  | -0.039400 
             5  |  0.331005  |  0.040651  | -0.295426 
 G_Q02B        
             1  | -0.061691  |  0.104820  |  0.032386 
             2  |  0.340202  | -0.578038  | -0.178597 
             3  |  0.441758  | -0.750591  | -0.231912 
             4  |  0.529965  | -0.900465  | -0.278218 
             5  |  0.675229  | -1.147282  | -0.354478 
 G_Q02C        
             1  | -0.233182  | -0.234828  | -0.005294 
             2  |  0.027955  |  0.028152  |  0.000635 
             3  |  0.114893  |  0.115704  |  0.002608 
             4  |  0.218999  |  0.220545  |  0.004972 
             5  |  0.430918  |  0.433960  |  0.009783 
 G_Q02D        
             1  | -0.292278  | -0.501917  |  0.087116 
             2  | -0.066430  | -0.114078  |  0.019800 
             3  |  0.013132  |  0.022552  | -0.003914 
             4  |  0.103927  |  0.178470  | -0.030976 
             5  |  0.328963  |  0.564915  | -0.098050
Code:
* Example generated by -dataex-. To install: ssc install dataex

clear
input float(G_Q01A G_Q01B G_Q01C G_Q01D G_Q01E G_Q01F G_Q01G G_Q01H G_Q02A G_Q02B G_Q02C G_Q02D WT)
5 5 4 4 3 5 5 5 5 1 2 5  670.3777
5 5 2 2 1 4 1 4 5 1 5 5 1474.5376
5 2 5 3 1 3 5 1 5 1 1 1 1480.1084
4 5 5 4 2 2 5 4 4 2 3 3 1064.5608
1 1 1 1 1 1 1 1 1 1 1 1 1356.1427
5 5 5 5 4 4 2 5 5 1 4 5  697.5229
3 2 1 2 1 1 1 2 3 1 1 1  862.6973
4 4 5 4 1 3 5 4 3 1 1 2  1248.006
3 5 4 3 2 2 4 4 5 1 3 3   824.368
1 1 1 1 1 1 1 1 1 1 1 1 1874.0227
5 4 5 4 1 4 4 4 4 1 2 3  488.0146
5 5 2 2 1 2 1 1 4 1 2 2  1322.504
5 5 1 1 1 2 1 3 3 1 5 5 1304.4955
1 2 1 2 3 2 4 1 3 1 5 4  534.6276
5 5 1 4 1 5 1 5 5 1 1 2  544.7978
5 1 1 1 1 4 1 4 1 1 1 4 1097.4651
1 1 1 1 5 1 1 1 1 1 1 4 1341.5585
5 5 3 1 1 4 1 2 5 1 4 1  747.2416
5 5 1 4 5 4 1 1 5 1 5 1 1994.5953
5 5 1 1 1 2 1 1 5 1 1 5  755.1249
1 1 1 1 1 1 1 1 1 1 1 1 1637.1313
5 4 1 1 1 4 1 5 4 1 3 5 1093.3983
2 5 5 2 1 2 4 1 4 1 1 2  862.6757
5 5 5 4 2 4 4 5 5 2 5 5  915.0981
5 5 5 5 4 5 5 4 5 1 4 4  860.2231
5 5 4 3 2 4 2 3 1 1 5 2 1127.2556
3 5 5 4 4 3 4 3 5 3 3 4  778.3862
5 5 2 1 1 1 5 3 5 1 1 4   658.481
4 5 5 3 2 2 3 4 5 1 2 5   703.714
1 1 1 1 1 1 1 4 1 1 2 2  1635.737
2 1 1 1 1 1 3 1 1 1 1 5 1245.5356
5 5 5 5 1 5 5 5 5 1 5 3 1189.4763
5 5 5 3 3 2 5 5 5 1 4 4  958.0001
5 4 5 5 3 1 1 5 5 1 4 5  1252.147
4 1 1 1 1 3 1 1 1 1 1 1  949.5825
2 5 4 4 4 2 4 4 4 2 5 4  986.7715
2 5 2 3 1 2 3 2 5 1 3 2   893.688
5 5 1 1 1 3 1 1 5 1 1 5 1621.4678
5 5 4 1 1 4 3 5 5 2 2 3  923.4249
5 5 1 1 1 1 1 1 1 1 5 1 1343.4316
4 5 3 4 2 3 1 4 5 1 3 2 1049.4156
5 5 1 1 1 1 1 5 1 1 5 5  1378.893
5 1 1 1 1 1 1 1 2 1 1 1  849.3949
1 1 1 1 3 1 5 1 1 1 1 4 1450.1848
4 1 1 1 1 2 1 1 1 1 1 1 1017.3097
1 1 1 1 1 1 1 1 1 1 1 1 1030.2325
5 5 1 1 1 3 1 5 3 1 3 3 1320.2722
4 5 3 2 1 2 3 1 2 1 1 2 1113.2659
5 5 2 2 2 3 1 5 5 1 5 5 1013.8658
4 4 3 1 1 1 3 3 4 1 1 2 1138.4254
5 5 1 1 1 2 1 2 5 1 5 5 1163.7865
5 2 1 2 1 2 1 5 1 1 1 5 1060.8427
5 1 2 3 2 4 1 2 2 1 1 1 1166.6366
3 5 2 2 1 3 5 4 5 1 3 3 1333.4493
2 5 3 1 1 2 4 4 5 1 1 2 1495.5415
2 5 3 5 4 2 1 3 5 1 2 2  845.4944
4 5 5 5 4 4 2 4 5 4 5 5  795.5335
1 1 2 1 1 2 1 4 1 1 1 1  710.6758
5 5 4 1 1 3 1 4 3 1 1 3 1570.0457
1 1 1 1 1 1 1 1 1 1 1 2 1350.4603
1 5 2 1 1 2 1 4 5 1 5 4 1245.5356
4 1 1 1 1 4 1 1 1 1 1 1  985.5627
3 5 5 4 2 2 3 2 2 1 1 2 1248.2083
4 5 5 4 2 3 4 4 5 2 5 5 1863.6233
3 5 3 3 1 5 5 1 3 1 1 3 1091.4998
2 5 5 5 5 5 4 5 5 2 5 5  754.7754
2 4 4 4 4 3 3 2 4 2 3 2  958.0001
4 5 4 3 1 3 4 3 4 1 2 3 1302.5463
4 5 3 2 1 5 1 1 5 1 3 2 1113.2659
5 4 1 1 1 2 1 4 3 1 2 5 1003.9622
3 2 1 2 1 3 4 4 2 1 1 2  1222.442
1 5 5 4 5 5 5 2 5 1 2 5 1201.3804
5 5 1 3 1 5 1 3 5 1 5 4 1118.7402
5 5 1 3 2 5 1 5 3 1 5 5 1166.6366
3 4 4 3 3 2 3 3 5 1 3 3 1038.4982
2 2 4 1 1 2 1 1 1 1 1 2 1736.6432
5 5 5 2 2 3 5 1 5 2 1 2  1416.138
3 5 5 5 5 3 1 2 5 2 5 2 1141.8723
5 5 4 4 2 5 1 5 5 1 3 3 540.10284
2 5 4 4 1 2 5 2 5 1 1 5  865.8524
1 5 4 2 1 1 5 5 5 1 4 2  312.7036
4 4 4 3 1 5 2 5 4 1 4 4  1102.532
5 5 5 5 2 1 4 1 5 3 3 3  898.0923
1 5 3 3 1 1 1 1 5 1 1 5  830.7625
5 5 4 3 2 3 5 2 5 1 2 2 1154.9568
3 1 5 1 1 1 1 5 1 1 1 1 1509.3463
5 1 1 1 1 1 4 1 1 1 2 4 1412.1627
3 5 4 3 2 2 5 3 5 1 1 2  933.4961
1 1 1 1 1 1 1 1 1 1 1 1  1275.919
5 5 4 2 2 2 1 1 1 1 1 1   1679.76
5 2 1 1 1 1 1 5 5 1 1 2  975.3658
5 5 1 3 3 1 5 5 2 1 4 3  710.1245
5 5 5 4 1 5 1 5 5 2 4 4 1142.1385
5 5 5 5 4 4 5 5 5 4 4 2 1559.4113
5 5 5 4 2 3 3 4 5 3 4 4  711.0385
4 5 5 5 5 5 3 4 5 5 5 3 1570.0457
4 2 4 4 1 2 1 2 1 1 1 2  1427.972
5 5 5 4 2 2 5 3 5 2 3 4 1112.0211
1 1 1 1 1 1 1 1 1 1 1 1 1202.7153
3 4 2 2 2 3 1 2 5 1 4 2  633.3771
2 5 3 3 2 2 5 2 5 3 3 2 1765.0685
5 5 5 4 1 3 5 3 5 5 5 3  1154.407
5 5 4 3 1 5 3 4 5 3 4 2 1096.2896
4 5 1 1 1 4 4 5 1 1 4 4 1086.3383
4 4 5 3 2 4 3 2 3 2 5 2 1248.2083
4 2 1 1 1 3 2 2 3 1 1 2   997.721
3 3 3 3 2 3 1 2 3 1 5 5 1172.2534
5 4 1 1 1 4 1 1 5 1 1 1  905.6619
5 5 3 2 1 4 1 5 5 1 1 3  706.9456
5 1 5 1 1 5 1 1 1 1 1 1  926.6711
1 1 1 1 1 1 1 1 5 1 1 1  820.6309
5 5 1 1 1 4 5 1 4 1 1 5 1016.6126
5 5 2 2 1 1 1 1 5 1 1 1 1026.8401
4 4 2 1 1 4 1 4 1 1 1 5  869.4208
5 5 5 3 2 3 5 4 5 2 3 4  696.1805
1 5 3 4 1 1 4 1 3 1 1 3 1171.6075
5 4 2 3 2 5 3 5 3 1 4 4 1390.6957
5 2 5 2 1 4 5 2 2 1 1 4  1278.557
4 4 3 3 2 2 1 1 2 1 4 4 1799.5986
5 5 4 4 2 2 1 1 2 1 5 5  1043.791
2 1 3 2 1 1 4 1 1 1 1 1  927.9819
1 1 1 1 1 1 3 3 2 1 2 1 1026.8401
5 5 3 4 2 5 5 4 5 1 5 5  561.1263
5 5 4 1 1 3 1 5 5 1 5 5  1349.911
3 4 5 4 1 3 4 3 4 1 1 3  799.8239
5 5 5 4 1 1 1 1 4 1 1 5 1054.6245
1 1 1 1 1 1 1 1 1 1 1 1 1033.1786
4 5 5 4 3 3 4 2 5 2 2 5 1329.9496
2 2 4 4 1 1 1 2 2 1 2 2 1655.1737
1 1 1 1 1 5 1 1 1 1 1 1 1509.3463
2 4 3 3 1 1 5 1 5 1 2 3  1105.469
4 1 1 1 1 1 1 4 1 1 1 1 1033.8688
5 5 3 3 1 5 5 3 5 3 3 4  753.2714
5 5 5 5 1 5 3 5 5 2 5 5 1652.5264
4 5 5 5 3 1 1 4 5 5 5 5  705.0697
5 5 5 4 1 2 5 5 5 1 5 2  951.4235
2 3 3 4 5 2 1 2 5 1 5 3 1157.4608
3 5 5 4 2 3 4 3 5 2 3 5  657.3076
2 5 5 3 2 2 5 3 5 2 3 2  614.6135
2 2 1 2 1 1 1 1 1 1 1 1  654.9514
5 5 4 3 3 4 5 5 5 1 4 4 1282.5227
5 5 5 4 2 2 4 2 5 2 4 3 1396.2556
3 5 1 1 1 1 3 2 5 2 2 1  705.0764
1 1 1 1 1 3 3 1 1 1 2 1  1898.487
3 1 1 1 1 1 1 5 1 1 1 5 1556.9008
3 3 4 4 1 4 3 4 4 1 1 2  1232.802
2 5 2 2 1 2 5 4 5 1 2 4  1778.042
4 5 5 4 3 3 3 3 5 3 2 3  846.9681
2 1 1 1 1 2 1 2 2 1 2 2  862.6973
5 4 4 4 3 5 4 5 5 1 5 4  896.2487
5 5 5 4 2 5 5 4 5 1 4 2 1740.0518
5 3 1 1 1 2 1 1 5 1 1 5   1271.54
5 4 3 3 2 1 5 2 3 1 3 5  969.6646
4 5 4 2 1 2 5 4 5 1 4 4 1208.1257
5 5 1 1 1 1 1 1 5 1 1 5   1424.29
5 5 5 4 1 5 5 4 5 1 4 4  757.2543
1 3 3 4 1 2 3 1 1 1 1 5 1994.5953
5 5 1 1 1 1 1 5 4 1 5 1  1120.931
5 1 1 1 1 2 1 1 1 1 1 2 1578.2784
2 3 1 1 1 1 3 2 3 1 2 3 1675.4478
1 4 4 4 5 2 1 1 5 2 2 4 553.89606
5 5 2 3 1 3 5 2 5 1 1 5  956.9728
3 5 4 3 1 2 1 1 5 1 3 4 1222.8916
5 1 3 1 1 1 1 1 5 1 1 5  1032.231
5 5 5 4 1 3 5 5 5 2 1 3  850.9202
2 5 4 4 3 4 4 3 2 1 2 3 1020.3174
5 5 4 3 1 5 1 4 1 1 5 5 1077.5919
2 4 4 4 4 3 4 3 4 1 3 2 1302.1807
3 4 5 4 1 3 4 4 4 1 1 3  642.8826
5 5 4 4 1 4 1 2 4 1 1 3 1053.9055
5 5 4 2 1 3 1 2 4 1 1 5 1374.9136
4 5 4 3 2 4 1 4 5 1 4 3  1556.535
1 4 4 3 4 3 4 3 5 2 2 2  997.8046
1 1 1 1 1 1 1 1 1 1 1 1 1765.4777
5 5 2 2 2 2 1 5 5 1 1 2  905.0423
5 4 4 4 2 5 5 5 5 1 5 5  1776.084
5 5 5 3 1 3 3 1 5 1 1 5 1094.1616
2 5 5 4 3 3 2 2 5 4 1 2 1103.8457
2 5 5 4 2 4 4 2 5 2 2 2  722.2988
5 5 4 1 1 2 5 2 5 2 3 4  1566.508
5 5 5 2 1 4 5 5 5 1 5 5 1304.4955
4 5 2 2 1 5 1 4 5 1 1 3  739.7717
2 1 1 1 1 2 1 4 1 1 1 1  806.0541
5 5 1 1 1 3 1 5 1 1 1 1  597.4919
1 1 1 1 2 2 1 2 4 1 1 4   857.576
5 5 5 4 3 5 1 2 5 2 3 3  767.5212
1 1 1 1 1 5 1 1 1 1 1 1   830.862
5 1 1 4 3 5 1 3 1 1 1 2  935.6891
1 1 1 3 1 1 1 1 1 1 1 1  1290.099
1 1 1 2 1 1 1 5 1 1 1 5  1946.581
3 1 1 2 1 4 3 4 2 1 1 3 1004.8798
1 1 1 1 1 1 1 1 1 1 1 1  799.8239
4 5 5 4 3 4 2 4 5 2 3 3 1141.8723
3 5 3 2 2 2 3 5 5 1 3 4 540.10284
1 5 5 2 5 5 3 1 5 1 1 2 1509.3463
1 5 1 1 1 2 5 2 5 1 1 5  905.3553
5 5 4 4 1 3 2 1 5 1 1 4  753.2714
1 5 1 4 1 4 1 1 4 1 1 2  690.6699
2 5 2 1 1 2 5 3 5 1 4 5 1425.7312
5 1 5 4 2 4 4 4 1 1 4 2 1052.9564
end
label values G_Q01A G_Q01A
label def G_Q01A 1 "Never", modify
label def G_Q01A 2 "Less than once a month", modify
label def G_Q01A 3 "Less than once a week but at least once a month", modify
label def G_Q01A 4 "At least once a week but not every day", modify
label def G_Q01A 5 "Every day", modify
label values G_Q01B G_Q01B
label def G_Q01B 1 "Never", modify
label def G_Q01B 2 "Less than once a month", modify
label def G_Q01B 3 "Less than once a week but at least once a month", modify
label def G_Q01B 4 "At least once a week but not every day", modify
label def G_Q01B 5 "Every day", modify
label values G_Q01C G_Q01C
label def G_Q01C 1 "Never", modify
label def G_Q01C 2 "Less than once a month", modify
label def G_Q01C 3 "Less than once a week but at least once a month", modify
label def G_Q01C 4 "At least once a week but not every day", modify
label def G_Q01C 5 "Every day", modify
label values G_Q01D G_Q01D
label def G_Q01D 1 "Never", modify
label def G_Q01D 2 "Less than once a month", modify
label def G_Q01D 3 "Less than once a week but at least once a month", modify
label def G_Q01D 4 "At least once a week but not every day", modify
label def G_Q01D 5 "Every day", modify
label values G_Q01E G_Q01E
label def G_Q01E 1 "Never", modify
label def G_Q01E 2 "Less than once a month", modify
label def G_Q01E 3 "Less than once a week but at least once a month", modify
label def G_Q01E 4 "At least once a week but not every day", modify
label def G_Q01E 5 "Every day", modify
label values G_Q01F G_Q01F
label def G_Q01F 1 "Never", modify
label def G_Q01F 2 "Less than once a month", modify
label def G_Q01F 3 "Less than once a week but at least once a month", modify
label def G_Q01F 4 "At least once a week but not every day", modify
label def G_Q01F 5 "Every day", modify
label values G_Q01G G_Q01G
label def G_Q01G 1 "Never", modify
label def G_Q01G 2 "Less than once a month", modify
label def G_Q01G 3 "Less than once a week but at least once a month", modify
label def G_Q01G 4 "At least once a week but not every day", modify
label def G_Q01G 5 "Every day", modify
label values G_Q01H G_Q01H
label def G_Q01H 1 "Never", modify
label def G_Q01H 2 "Less than once a month", modify
label def G_Q01H 3 "Less than once a week but at least once a month", modify
label def G_Q01H 4 "At least once a week but not every day", modify
label def G_Q01H 5 "Every day", modify
label values G_Q02A G_Q02A
label def G_Q02A 1 "Never", modify
label def G_Q02A 2 "Less than once a month", modify
label def G_Q02A 3 "Less than once a week but at least once a month", modify
label def G_Q02A 4 "At least once a week but not every day", modify
label def G_Q02A 5 "Every day", modify
label values G_Q02B G_Q02B
label def G_Q02B 1 "Never", modify
label def G_Q02B 2 "Less than once a month", modify
label def G_Q02B 3 "Less than once a week but at least once a month", modify
label def G_Q02B 4 "At least once a week but not every day", modify
label def G_Q02B 5 "Every day", modify
label values G_Q02C G_Q02C
label def G_Q02C 1 "Never", modify
label def G_Q02C 2 "Less than once a month", modify
label def G_Q02C 3 "Less than once a week but at least once a month", modify
label def G_Q02C 4 "At least once a week but not every day", modify
label def G_Q02C 5 "Every day", modify
label values G_Q02D G_Q02D
label def G_Q02D 1 "Never", modify
label def G_Q02D 2 "Less than once a month", modify
label def G_Q02D 3 "Less than once a week but at least once a month", modify
label def G_Q02D 4 "At least once a week but not every day", modify
label def G_Q02D 5 "Every day", modify