I am writing an undergraduate dissertation on UK gender pay gap using LFS data. I am having trouble interpreting the decomposition results of categorical variables since I have chosen to omit a base category to reference it from. I use the standard oaxaca with the males coefficients as the reference category. First oaxaca estimates 2 seperate OLS regressions for male and female wage equations, and then using a transformation alters them in the following way:
Male wage eq: Ym = XmBm +um
Female wage eq: Yf= XfBf +uf
Decomposition: Ym - Yf = (Xm - Xf)Bm + (Bm - Bf) Xf
In my regression Y is ln(hourlywage), X is the endowments, B the beta coefficients from the ols regression. M indicates that the subject is male and F that they are female. The first term is the explained portion due to differences between male and female endowments i.e. men being aged higher and therefore reflected in wages. The second part is the unexplained portion due to differences in coefficients or how employers value the workers differently.
The regression is performed on Stata 13.1 using Ben Jann's (2008) command, i have studied this paper extensively.
My command is as follows.
Code:
oaxaca lnhourlywage AGE AGE2 TENURE EDUCATION2-EDUCATION6 ETHGBEUL2-ETHGBEUL11 FDPCH19 dumMARRIED ForeignBorn dumLARGEFIRM dumPUBLIC dumPT nGOR9D2-nGOR9D12 SC10MMJ2-SC10MMJ9 INDS07M2-INDS07M21, by (SEX) weight(1) vce(robust)
overall
Code:
overall group_1 2.621392 .0094686 276.85 0.000 2.602834 2.63995 group_2 2.41126 .0079192 304.48 0.000 2.395739 2.426782 difference .2101316 .0123437 17.02 0.000 .1859383 .2343249 explained .1324336 .0141093 9.39 0.000 .1047799 .1600873 unexplained .077698 .0142629 5.45 0.000 .0497432 .1056528 explained AGE .0050777 .0118256 0.43 0.668 -.0181 .0282555 AGE2 -.0057998 .0103723 -0.56 0.576 -.0261291 .0145295 TENURE .0046142 .0012856 3.59 0.000 .0020944 .007134 EDUCATION2 .0026564 .0013117 2.03 0.043 .0000856 .0052273 EDUCATION3 -.0062741 .0022621 -2.77 0.006 -.0107079 -.0018404 EDUCATION4 .0097052 .0027188 3.57 0.000 .0043765 .0150339 EDUCATION5 -.003627 .0016846 -2.15 0.031 -.0069288 -.0003252 EDUCATION6 -.0085428 .0040202 -2.12 0.034 -.0164223 -.0006633 ETHGBEUL2 .0001289 .0002574 0.50 0.617 -.0003756 .0006334 ETHGBEUL3 -.0002747 .0005227 -0.53 0.599 -.0012992 .0007498 ETHGBEUL4 -.0008174 .0005127 -1.59 0.111 -.0018223 .0001876 ETHGBEUL5 -.0007007 .0006411 -1.09 0.274 -.0019572 .0005559 ETHGBEUL6 -.0000719 .0002336 -0.31 0.758 -.0005299 .000386 ETHGBEUL7 -.0003041 .0002951 -1.03 0.303 -.0008824 .0002742 ETHGBEUL8 .0000172 .0001927 0.09 0.929 -.0003604 .0003949 ETHGBEUL9 .0014672 .0008816 1.66 0.096 -.0002606 .0031951 ETHGBEUL10 -.0000808 .000672 -0.12 0.904 -.0013978 .0012362 ETHGBEUL11 .0005043 .0006998 0.72 0.471 -.0008672 .0018759 FDPCH19 -.000341 .0003802 -0.90 0.370 -.0010861 .0004042 dumMARRIED .0027049 .0010319 2.62 0.009 .0006823 .0047274 ForeignBorn .0008964 .0006809 1.32 0.188 -.0004381 .0022309 dumLARGEFIRM .0093653 .0019585 4.78 0.000 .0055266 .013204 dumPUBLIC .0036633 .0046232 0.79 0.428 -.005398 .0127246 dumPT .0219573 .0097025 2.26 0.024 .0029407 .0409739 nGOR9D2 -.0002087 .0003383 -0.62 0.537 -.0008718 .0004544 nGOR9D3 .000038 .0001399 0.27 0.786 -.0002363 .0003123 nGOR9D4 8.90e-06 .0001011 0.09 0.930 -.0001893 .0002071 nGOR9D5 .000421 .000448 0.94 0.347 -.000457 .001299 nGOR9D6 .0006032 .0006304 0.96 0.339 -.0006322 .0018387 nGOR9D7 .0003375 .0011976 0.28 0.778 -.0020097 .0026847 nGOR9D8 .0006368 .0008569 0.74 0.457 -.0010428 .0023164 nGOR9D9 -.0000971 .0002552 -0.38 0.704 -.0005972 .0004031 nGOR9D11 .0000947 .0002681 0.35 0.724 -.0004308 .0006201 nGOR9D12 -.0000849 .0005172 -0.16 0.870 -.0010985 .0009287 SC10MMJ2 -.0012014 .0009469 -1.27 0.204 -.0030573 .0006544 SC10MMJ3 -.0031096 .0012749 -2.44 0.015 -.0056084 -.0006109 SC10MMJ4 .0385581 .0049023 7.87 0.000 .0289498 .0481663 SC10MMJ5 -.0383838 .0045403 -8.45 0.000 -.0472825 -.029485 SC10MMJ6 .0516481 .0060227 8.58 0.000 .0398439 .0634523 SC10MMJ7 .0209449 .0031875 6.57 0.000 .0146975 .0271923 SC10MMJ8 -.031815 .0035123 -9.06 0.000 -.0386989 -.0249311 SC10MMJ9 -.0044424 .0027582 -1.61 0.107 -.0098484 .0009635 INDS07M2 .002221 .0008739 2.54 0.011 .0005082 .0039338 INDS07M3 .0275756 .0093634 2.95 0.003 .0092238 .0459274 INDS07M4 .0027406 .0009769 2.81 0.005 .000826 .0046553 INDS07M5 .0037671 .0013213 2.85 0.004 .0011775 .0063567 INDS07M6 .0177626 .0051666 3.44 0.001 .0076362 .0278889 INDS07M7 -.0005174 .0007723 -0.67 0.503 -.0020312 .0009963 INDS07M8 .015639 .0044324 3.53 0.000 .0069517 .0243263 INDS07M9 -.0009997 .0009588 -1.04 0.297 -.0028789 .0008795 INDS07M10 .0114097 .0030692 3.72 0.000 .0053942 .0174253 INDS07M11 .0076543 .0024591 3.11 0.002 .0028346 .012474 INDS07M12 .0002329 .0004162 0.56 0.576 -.0005828 .0010486 INDS07M13 .0054532 .0021438 2.54 0.011 .0012514 .0096549 INDS07M14 .001217 .0009685 1.26 0.209 -.0006812 .0031152 INDS07M15 -.002001 .0013888 -1.44 0.150 -.0047231 .0007211 INDS07M16 -.0134662 .0105766 -1.27 0.203 -.034196 .0072636 INDS07M17 -.0163777 .0142296 -1.15 0.250 -.0442672 .0115118 INDS07M18 -.0003783 .0004939 -0.77 0.444 -.0013464 .0005898 INDS07M19 .0000692 .0002542 0.27 0.786 -.0004291 .0005674 INDS07M21 .0005594 .0004978 1.12 0.261 -.0004162 .001535 unexplained AGE .3944143 .2342884 1.68 0.092 -.0647825 .8536112 AGE2 -.1797622 .1290525 -1.39 0.164 -.4327004 .073176 TENURE -.0112057 .0106252 -1.05 0.292 -.0320308 .0096193 EDUCATION2 .0016734 .0032534 0.51 0.607 -.004703 .0080499 EDUCATION3 .0203164 .0110235 1.84 0.065 -.0012892 .0419221 EDUCATION4 .0185935 .0102016 1.82 0.068 -.0014013 .0385883 EDUCATION5 .0093388 .005847 1.60 0.110 -.0021211 .0207986 EDUCATION6 .0325869 .0187112 1.74 0.082 -.0040864 .0692601 ETHGBEUL2 -.0011213 .0007751 -1.45 0.148 -.0026403 .0003978 ETHGBEUL3 -.0071021 .0035068 -2.03 0.043 -.0139753 -.0002288 ETHGBEUL4 .001985 .0010814 1.84 0.066 -.0001344 .0041045 ETHGBEUL5 -.002007 .0014089 -1.42 0.154 -.0047685 .0007544 ETHGBEUL6 -9.44e-07 .0007947 -0.00 0.999 -.0015586 .0015567 ETHGBEUL7 -.0003573 .000293 -1.22 0.223 -.0009316 .0002171 ETHGBEUL8 -.0007657 .0004981 -1.54 0.124 -.0017419 .0002105 ETHGBEUL9 -.0035339 .0017266 -2.05 0.041 -.006918 -.0001498 ETHGBEUL10 -.0038603 .0017137 -2.25 0.024 -.0072191 -.0005014 ETHGBEUL11 -.0027829 .0014262 -1.95 0.051 -.0055782 .0000123 FDPCH19 -.0000574 .0090339 -0.01 0.995 -.0177635 .0176486 dumMARRIED .0367891 .0116264 3.16 0.002 .0140018 .0595763 ForeignBorn .0163412 .006664 2.45 0.014 .00328 .0294025 dumLARGEFIRM .0265318 .0057515 4.61 0.000 .015259 .0378046 dumPUBLIC -.0133706 .0114932 -1.16 0.245 -.035897 .0091557 dumPT -.0116705 .0138848 -0.84 0.401 -.0388842 .0155431 nGOR9D2 .003055 .0059856 0.51 0.610 -.0086766 .0147866 nGOR9D3 -.0044866 .0048935 -0.92 0.359 -.0140777 .0051044 nGOR9D4 -.0035009 .0042639 -0.82 0.412 -.0118581 .0048562 nGOR9D5 .0023759 .0038633 0.61 0.539 -.005196 .0099478 nGOR9D6 .0009906 .0053927 0.18 0.854 -.0095789 .0115601 nGOR9D7 -.0026652 .0055004 -0.48 0.628 -.0134459 .0081154 nGOR9D8 -.0011883 .0072098 -0.16 0.869 -.0153192 .0129426 nGOR9D9 .0000127 .0056967 0.00 0.998 -.0111526 .0111781 nGOR9D11 .0010843 .0044143 0.25 0.806 -.0075676 .0097363 nGOR9D12 .000713 .0033906 0.21 0.833 -.0059325 .0073585 SC10MMJ2 .0066436 .011267 0.59 0.555 -.0154394 .0287266 SC10MMJ3 .0079522 .0060274 1.32 0.187 -.0038613 .0197656 SC10MMJ4 .0011118 .008778 0.13 0.899 -.0160927 .0183162 SC10MMJ5 .0024493 .0008813 2.78 0.005 .000722 .0041766 SC10MMJ6 .0053725 .0088547 0.61 0.544 -.0119824 .0227273 SC10MMJ7 .0046947 .0061072 0.77 0.442 -.0072752 .0166645 SC10MMJ8 .0016438 .0009278 1.77 0.076 -.0001747 .0034623 SC10MMJ9 .0050696 .0047682 1.06 0.288 -.0042759 .0144151 INDS07M2 .0000547 .0001878 0.29 0.771 -.0003133 .0004227 INDS07M3 -.0007536 .0082814 -0.09 0.927 -.0169848 .0154776 INDS07M4 -.0002869 .0006815 -0.42 0.674 -.0016227 .0010489 INDS07M5 -.000028 .0004139 -0.07 0.946 -.0008393 .0007833 INDS07M6 -.0002444 .0033183 -0.07 0.941 -.0067481 .0062593 INDS07M7 -.0045209 .0233454 -0.19 0.846 -.050277 .0412352 INDS07M8 .0010744 .0034373 0.31 0.755 -.0056626 .0078114 INDS07M9 -.000082 .009397 -0.01 0.993 -.0184998 .0183359 INDS07M10 -.0013234 .0036651 -0.36 0.718 -.0085068 .00586 INDS07M11 .0009762 .0061018 0.16 0.873 -.010983 .0129355 INDS07M12 -.0001798 .0017793 -0.10 0.920 -.0036671 .0033075 INDS07M13 .0009825 .0089838 0.11 0.913 -.0166255 .0185905 INDS07M14 -.0010676 .0066975 -0.16 0.873 -.0141945 .0120593 INDS07M15 -.0042303 .0142962 -0.30 0.767 -.0322503 .0237896 INDS07M16 .0004553 .0320498 0.01 0.989 -.0623611 .0632717 INDS07M17 -.0100713 .0408718 -0.25 0.805 -.0901785 .0700359 INDS07M18 -.00205 .003774 -0.54 0.587 -.0094468 .0053468 INDS07M19 -.0039289 .0035324 -1.11 0.266 -.0108523 .0029945 INDS07M21 -.0003552 .000351 -1.01 0.311 -.0010432 .0003327 _cons -.2490229 .2102742 -1.18 0.236 -.6611528 .1631069
My dependent variable is lnhourlywage and thus the overall differential is 0.21 indicating that females earn 21% than males (logarithmic dependent variable enables us to interpret as relative changes in wage). The unexplained portion is the mean increase in female wages if we apply the male coefficients (betas) to womens endowments (X values), and the explained portion is the mean increase in womens wages if women had the same endowments as men. The unexplained portion is then attributed to discrimination in the labour market. (FEEL FREE TO CORRECT ME IF I AM WRONG).
My queries lie in:
Interpreting the explained portion, for example: If females had the same amount of tenure as men, the overall increase in females wages is 0.46%?
and for example in the unexplained portion: With regards to tenure the overall increase in females wages if we apply the male coefficients to the females endowments is -11.2%? (so an overall decrease)
With regards to categorical variables: 'the mean increase in womens wages if we applied the male coefficients to the female endowments of being a member of INDS07M11, over the omitted base category (INDS07M1), is 0.097%'
Main question is: Is it simple enough to say that the contribution to the unexplained is the sum of the vector of contributions for each categorical variable? For example can i sum INDS07M2 to INDS07M21 and this be the 'overall contribution of industry relative to the omitted base (Agriculture and Forestry here) to the unexplained wage gap?'
The decomposition of individual variables, how can i interpret the contribution of age to the explained/unexplained portions? Does the squared term need to be accounted for? (I am aware that during wage equation interpretation of square terms the formula for the unit change in y for a unit change in x is: B1 + B2X1 , does the same apply here?)
I can only apologise if i have displayed the table incorrectly as i am unsure how to present it (i am new). All help will be greatly appreciated. Thank you.
0 Response to Interpreting Oaxaca Decomposition with categorical variables
Post a Comment