I'm having difficulties trying estimate the following model working with panel data and a binary dependent variable
Code:
xtlogit Gov i.v2x_regime_lag cgdppc_lag max_rdiscl_lag NHIxl_lag cinc_lag Total_Oil_Income_PC_lag peace_year_lag decay_function_lag Americas Europe MENA Asia Africa if e2==1, vce(cluster country_name_numeric)
Regions (Americas, Europe, MENA, Asia, Africa) = binary
v2x_regime_lag = categorical
Other variables = continuous
+6000 observations
The result from the xtlogit is as follow:
Code:
Fitting comparison model: Iteration 0: log pseudolikelihood = -665.12183 Iteration 1: log pseudolikelihood = -638.32856 Iteration 2: log pseudolikelihood = -630.81981 Iteration 3: log pseudolikelihood = -630.49594 Iteration 4: log pseudolikelihood = -630.48068 Iteration 5: log pseudolikelihood = -630.47707 Iteration 6: log pseudolikelihood = -630.47634 Iteration 7: log pseudolikelihood = -630.47622 Iteration 8: log pseudolikelihood = -630.47619 Iteration 9: log pseudolikelihood = -630.47618 Fitting full model: tau = 0.0 log pseudolikelihood = -630.47618 tau = 0.1 log pseudolikelihood = -630.8826 Iteration 0: log pseudolikelihood = -630.8826 Iteration 1: log pseudolikelihood = -630.49654 Iteration 2: log pseudolikelihood = -630.45437 Iteration 3: log pseudolikelihood = -630.44726 Iteration 4: log pseudolikelihood = -630.44694 Iteration 5: log pseudolikelihood = -630.44694 (not concave) Iteration 6: log pseudolikelihood = -630.44694 (not concave) Iteration 7: log pseudolikelihood = -630.44694 (not concave) Iteration 8: log pseudolikelihood = -630.44694 (not concave) Iteration 9: log pseudolikelihood = -630.44694 (not concave) . . Iteration 257: log pseudolikelihood = -630.44694 (not concave)
//Marco Liedecke
0 Response to xtlogit does not converge (not concave)
Post a Comment