I'm currently analyzing whether capital controls affect economic development of countries in different ways for different levels of income. To differentiate countries I use the World Bank categorization (low, lower middle, upper middle, high income). I want to capture year specific effects and country effects so I use fixed effects.
The data includes 100 countries and 22 years and looks like this:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input long country2 int year double ka float loggdppc long incgroup_th 1 1995 1 9.137277 2 1 1996 .75 9.160067 2 1 1997 1 9.154971 2 1 1998 .75 9.189805 2 1 1999 .75 9.207232 2 end label values country2 country2 label def country2 1 "Algeria", modify label values incgroup_th incomegroup5 label def incomegroup5 2 "Lower Middle Income", modify
Code:
xtreg loggdppc c.L.ka##I.incgroup_th I.year, fe
Code:
xtreg loggdppc L.ka I.year if incgroup_th==1, fe xtreg loggdppc L.ka I.year if incgroup_th==2, fe xtreg loggdppc L.ka I.year if incgroup_th==3, fe xtreg loggdppc L.ka I.year if incgroup_th==4, fe
Code:
. xtreg loggdppc c.L.ka##I.incgroup_th I.year, fe Fixed-effects (within) regression Number of obs = 2,094 Group variable: country2 Number of groups = 100 R-sq: Obs per group: within = 0.6439 min = 17 between = 0.9173 avg = 20.9 overall = 0.5815 max = 21 F(27,1967) = 131.72 corr(u_i, Xb) = 0.6650 Prob > F = 0.0000 -------------------------------------------------------------------------------------- loggdppc | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------------------+---------------------------------------------------------------- ka | L1. | -.0403811 .0397236 -1.02 0.309 -.118286 .0375237 | incgroup_th | Lower Middle Income | .1457912 .0257779 5.66 0.000 .0952363 .196346 Upper Middle Income | .3751304 .0319848 11.73 0.000 .3124027 .4378582 High Income | .4449389 .0383314 11.61 0.000 .3697644 .5201134 | incgroup_th#cL.ka | Lower Middle Income | .0749596 .0360304 2.08 0.038 .0042979 .1456214 Upper Middle Income | -.0360145 .0431999 -0.83 0.405 -.1207369 .0487079 High Income | -.0693851 .0488317 -1.42 0.156 -.1651525 .0263823 | year | 1997 | .018742 .0167662 1.12 0.264 -.0141394 .0516234 1998 | .029583 .0167891 1.76 0.078 -.0033433 .0625093 1999 | .0418188 .016792 2.49 0.013 .0088868 .0747507 2000 | .0743435 .0167547 4.44 0.000 .0414846 .1072024 2001 | .0902911 .016751 5.39 0.000 .0574395 .1231427 2002 | .1016007 .0167662 6.06 0.000 .0687192 .1344821 2003 | .1296795 .0167714 7.73 0.000 .096788 .162571 2004 | .1620865 .0168044 9.65 0.000 .1291302 .1950429 2005 | .1879397 .0168483 11.15 0.000 .1548972 .2209821 2006 | .2263145 .0168752 13.41 0.000 .1932195 .2594096 2007 | .2638747 .0169032 15.61 0.000 .2307246 .2970249 2008 | .264955 .0170949 15.50 0.000 .2314291 .298481 2009 | .2463653 .0170868 14.42 0.000 .212855 .2798755 2010 | .2712964 .0171339 15.83 0.000 .2376938 .3048989 2011 | .2974869 .0171138 17.38 0.000 .2639237 .3310501 2012 | .3036946 .0172869 17.57 0.000 .269792 .3375973 2013 | .3215378 .0173358 18.55 0.000 .2875393 .3555364 2014 | .3400188 .0173641 19.58 0.000 .3059649 .3740727 2015 | .3602189 .0173665 20.74 0.000 .3261602 .3942775 2016 | .3808082 .017317 21.99 0.000 .3468465 .4147699 | _cons | 8.994969 .030888 291.21 0.000 8.934392 9.055545 ---------------------+---------------------------------------------------------------- sigma_u | .96225507 sigma_e | .11780779 rho | .98523252 (fraction of variance due to u_i) -------------------------------------------------------------------------------------- F test that all u_i=0: F(99, 1967) = 209.90 Prob > F = 0.0000
Code:
. xtreg loggdppc L.ka I.year if incgroup_th==1, fe Fixed-effects (within) regression Number of obs = 301 Group variable: country2 Number of groups = 25 R-sq: Obs per group: within = 0.7095 min = 1 between = 0.4164 avg = 12.0 overall = 0.0050 max = 21 F(21,255) = 29.66 corr(u_i, Xb) = -0.4428 Prob > F = 0.0000 ------------------------------------------------------------------------------ loggdppc | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ka | L1. | .2355757 .0572047 4.12 0.000 .1229219 .3482295 | year | 1997 | .0419334 .0341734 1.23 0.221 -.0253646 .1092314 1998 | .0661726 .0350231 1.89 0.060 -.0027988 .135144 1999 | .0856925 .035103 2.44 0.015 .0165638 .1548213 2000 | .099322 .0341923 2.90 0.004 .0319868 .1666573 2001 | .1287047 .0341876 3.76 0.000 .0613788 .1960306 2002 | .150422 .0351686 4.28 0.000 .081164 .2196799 2003 | .1780879 .0350638 5.08 0.000 .1090364 .2471394 2004 | .217291 .0360973 6.02 0.000 .1462043 .2883778 2005 | .2722467 .037468 7.27 0.000 .1984605 .3460329 2006 | .3210197 .0375514 8.55 0.000 .2470694 .39497 2007 | .3702423 .0375416 9.86 0.000 .2963114 .4441733 2008 | .4095371 .0453309 9.03 0.000 .3202665 .4988078 2009 | .4345497 .0451828 9.62 0.000 .3455708 .5235286 2010 | .4641847 .0450854 10.30 0.000 .3753976 .5529718 2011 | .5113764 .0450854 11.34 0.000 .4225894 .6001635 2012 | .5211868 .0526365 9.90 0.000 .4175292 .6248443 2013 | .5580252 .0526365 10.60 0.000 .4543677 .6616828 2014 | .5769499 .0566277 10.19 0.000 .4654323 .6884675 2015 | .6101766 .0566277 10.78 0.000 .498659 .7216942 2016 | .6404074 .0566277 11.31 0.000 .5288898 .751925 | _cons | 7.264662 .0459164 158.22 0.000 7.174238 7.355086 -------------+---------------------------------------------------------------- sigma_u | .53813001 sigma_e | .11135118 rho | .95894112 (fraction of variance due to u_i) ------------------------------------------------------------------------------ F test that all u_i=0: F(24, 255) = 209.43 Prob > F = 0.0000
0 Response to Sample split or interactions in fixed effects regression
Post a Comment