This is the first time I post question here. I've read pretty much all the posts on Poisson regression but I'm still confused why upon my data, Log-OLS, Poisson with Robust SE, and Negative Binomial (also with robust SE) are giving different results. The signs of the key coefficient are different. The significance levels are also different.
I'm studying the effect of a set of policies on the number of patents each firm generates. The policies are launched in different states in different years so I use diff-in-diff identification strategy (one firm only appears in one province). The baseline model is the following: Yit = Treatedit + states FEs + year FEs + controls. Y is the number of patents. Treated is the diff-in-diff variable.
Let me be a little bit clearer about the Y variable. I'm using an unbalanced panel of many patenting firms. When a firm is not patenting in a certain year, its Y is 0. When it patents, its Y is the number of patents it files. Below is the structure of this variable.
Code:
application | _num | Freq. Percent Cum. ------------+----------------------------------- 0 | 38,728 75.44 75.44 1 | 7,435 14.48 89.92 2 | 2,224 4.33 94.25 3 | 1,006 1.96 96.21 1011 | 1 0.00 99.98 1144 | 1 0.00 99.98 1154 | 1 0.00 99.98 1166 | 1 0.00 99.98 1468 | 1 0.00 99.99 1651 | 1 0.00 99.99 1699 | 1 0.00 99.99 2067 | 1 0.00 99.99 2254 | 1 0.00 99.99 2479 | 1 0.00 100.00 3344 | 1 0.00 100.00 5608 | 1 0.00 100.00 ------------+-----------------------------------
I got started by estimating the model with Log-OLS. That is, I log the Y variable. The results look like this (I'm only showing the upper part to save space):
Code:
Linear regression Number of obs = 50,052 F(91, 9362) = . Prob > F = . R-squared = 0.4442 Root MSE = .42304 (Std. Err. adjusted for 9,363 clusters in firm_id) ------------------------------------------------------------------------------------------ | Robust application_num_log | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------------------+---------------------------------------------------------------- treated | .02698 .0074484 3.62 0.000 .0123795 .0415806 ppp | -.0593712 .0185295 -3.20 0.001 -.0956931 -.0230492 reward | -.0714084 .016627 -4.29 0.000 -.104001 -.0388159 employment_log | .0214589 .0040019 5.36 0.000 .0136142 .0293036 total_profit_log | .2982971 .1340681 2.22 0.026 .0354945 .5610997 total_assets_log | .0164814 .0032218 5.12 0.000 .010166 .0227967 cum_claims_log | .2868466 .0078559 36.51 0.000 .2714474 .3022459 age | -.0365134 .0034587 -10.56 0.000 -.0432932 -.0297336
Code:
Negative binomial regression Number of obs = 50,052 Wald chi2(91) = . Dispersion = mean Prob > chi2 = . Log pseudolikelihood = -38083.218 Pseudo R2 = 0.2805 (Std. Err. adjusted for 9,363 clusters in firm_id) ------------------------------------------------------------------------------------------ | Robust application_num | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------------------+---------------------------------------------------------------- treated | .2073176 .064875 3.20 0.001 .0801651 .3344702 ppp | -.2657429 .1499111 -1.77 0.076 -.5595634 .0280775 reward | -.4701472 .1618851 -2.90 0.004 -.7874362 -.1528581 employment_log | .0392265 .0191232 2.05 0.040 .0017457 .0767073 total_profit_log | .0947855 .0950564 1.00 0.319 -.0915217 .2810927 total_assets_log | .1030913 .0153379 6.72 0.000 .0730297 .133153 cum_claims_log | .78421 .0119894 65.41 0.000 .7607112 .8077088 age | -.1551658 .0195564 -7.93 0.000 -.1934957 -.1168359 | | _cons | -8.313501 7.020127 -1.18 0.236 -22.0727 5.445696 -------------------------+---------------------------------------------------------------- /lnalpha | -.040108 .08049 -.1978655 .1176495 -------------------------+---------------------------------------------------------------- alpha | .9606857 .0773256 .8204802 1.12485 ------------------------------------------------------------------------------------------
Code:
Poisson regression Number of obs = 50,052 Wald chi2(91) = . Log pseudolikelihood = -48064.653 Prob > chi2 = . (Std. Err. adjusted for 9,363 clusters in firm_id) ------------------------------------------------------------------------------------------ | Robust application_num | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------------------+---------------------------------------------------------------- treated | -.016993 .1490338 -0.11 0.909 -.309094 .2751079 ppp | -.4801813 .1427598 -3.36 0.001 -.7599853 -.2003773 reward | -.3160758 .2234765 -1.41 0.157 -.7540817 .1219301 employment_log | -.0106694 .039562 -0.27 0.787 -.0882095 .0668706 total_profit_log | -.0990516 .0746123 -1.33 0.184 -.2452889 .0471858 total_assets_log | .1005228 .0399201 2.52 0.012 .0222807 .1787648 cum_claims_log | .8592099 .0195339 43.99 0.000 .820924 .8974957 age | -.121652 .0475784 -2.56 0.011 -.214904 -.0284
Code:
Generalized linear models No. of obs = 50,052 Optimization : ML Residual df = 50,002 Scale parameter = 1 Deviance = 67060.11252 (1/df) Deviance = 1.341149 Pearson = 265176.3593 (1/df) Pearson = 5.303315 Variance function: V(u) = u [Poisson] Link function : g(u) = ln(u) [Log] AIC = 1.9588 Log pseudolikelihood = -48970.92686 BIC = -474002.4 (Std. Err. adjusted for 9,363 clusters in firm_id) ------------------------------------------------------------------------------------------ | Robust application_num | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------------------+---------------------------------------------------------------- treated | -.0196893 .1584752 -0.12 0.901 -.3302949 .2909164 ppp | -.4128056 .168902 -2.44 0.015 -.7438475 -.0817638 reward | -.3372642 .2281683 -1.48 0.139 -.7844658 .1099374 employment_log | -.0054456 .0349616 -0.16 0.876 -.0739691 .063078 total_profit_log | -.0989554 .072847 -1.36 0.174 -.241733 .0438222 total_assets_log | .1070102 .0336612 3.18 0.001 .0410354 .172985 cum_claims_log | .8808825 .0200839 43.86 0.000 .8415189 .9202462 age | -.1906753 .0358942 -5.31 0.000 -.2610266 -.1203241
Can anyone help me why the Poisson results are sooo different from the results of the Log-OLS and Negative Binomial? What could have cause this?
Thank you so much for your help!!!
Sophie
0 Response to Poisson with Robust SE showing totally different results from Log-OLS and NB
Post a Comment