I'm trying to identify influential observations in a bivariate logistic regression using Peribon's delta beta seeing that this is the appropriate measure for logistic regression.
FYI: I'm using paneldata
Onset:
- 0= Peace
- 1= Civil war onset
v2x_regime_lag (lagged one year)
- 0= Closed autocracy
- 1= Electoral autocracy
- 2= Electoral democracy
- 3= Liberal democracy
Code:
logit onset i.v2x_regime_lag if estimationssample2==1 predict db_model1, dbeta gen casenum=_n scatter db_model1 year, ml(casenum)
Code:
. logit onset i.v2x_regime_lag if estimationssample2==1 Iteration 0: log likelihood = -999.0105 Iteration 1: log likelihood = -976.58866 Iteration 2: log likelihood = -973.41285 Iteration 3: log likelihood = -973.37284 Iteration 4: log likelihood = -973.37278 Logistic regression Number of obs = 6,724 LR chi2(3) = 51.28 Prob > chi2 = 0.0000 Log likelihood = -973.37278 Pseudo R2 = 0.0257 -------------------------------------------------------------------------------- onset | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------------+---------------------------------------------------------------- v2x_regime_lag | 1 | .3910203 .1503304 2.60 0.009 .0963781 .6856626 2 | -.0252029 .2048356 -0.12 0.902 -.4266734 .3762676 3 | -1.505673 .3351286 -4.49 0.000 -2.162513 -.8488328 | _cons | -3.322635 .1072928 -30.97 0.000 -3.532925 -3.112345 --------------------------------------------------------------------------------
//Marco Liedecke
0 Response to Peribon's delta beta - bivariate logit regression
Post a Comment