Hello!

I am investigating whether implementing GSCMP (green practices) and EMS (environmental management systems) simultaneously positively influences the relationship between GSCMP and firm performance. Therefore, I added an interaction term in my model to test if there is a moderating effect. However, I'm not sure how to interpret the outcome; Can I interpret the GSCMP and EMS variables separately, or should I only look at the interaction coefficient? In my example, the coefficient is negative, would that imply a negative moderating effect? However, the effect is not significant does this mean that there is no support for a moderating effect at all? The variable EMS can be either 1 (=implemented EMS) or 0(=no EMS)


Thank you in advance!

Model (1) without interaction term
Code:
 xtreg TobinsQ_w laggedGSCMP Firmrisk_w Firmsize_w i.Industry i.year, re

Random-effects GLS regression                   Number of obs      =      3704
Group variable: ID                              Number of groups   =       463

R-sq:  within  = 0.1526                         Obs per group: min =         8
       between = 0.1937                                        avg =       8.0
       overall = 0.1788                                        max =         8

                                                Wald chi2(15)      =    682.88
corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000

------------------------------------------------------------------------------
   TobinsQ_w |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
 laggedGSCMP |  -.0372598   .0850066    -0.44   0.661    -.2038697      .12935
  Firmrisk_w |  -.4236717   .1316738    -3.22   0.001    -.6817476   -.1655957
  Firmsize_w |  -.2410935   .0255676    -9.43   0.000    -.2912051   -.1909818
             |
    Industry |
          2  |   -.558424   .2066768    -2.70   0.007    -.9635031   -.1533448
          3  |    .632852   .1774375     3.57   0.000      .285081    .9806231
          4  |  -.3235721   .2409018    -1.34   0.179     -.795731    .1485868
          5  |  -.5079201   .1782467    -2.85   0.004    -.8572772   -.1585631
          6  |   -.283431   .1584239    -1.79   0.074    -.5939362    .0270742
             |
        year |
       2008  |  -.6494589   .0436928   -14.86   0.000    -.7350951   -.5638226
       2009  |  -.4367351   .0436323   -10.01   0.000    -.5222528   -.3512174
       2010  |  -.2601445   .0436846    -5.96   0.000    -.3457647   -.1745243
       2011  |  -.3809431   .0442207    -8.61   0.000     -.467614   -.2942722
       2012  |  -.2867888   .0444518    -6.45   0.000    -.3739128   -.1996647
       2013  |   .1048752   .0444915     2.36   0.018     .0176735    .1920769
       2014  |   .1389063    .044855     3.10   0.002     .0509922    .2268205
             |
       _cons |    4.23682   .2465329    17.19   0.000     3.753625    4.720016
-------------+----------------------------------------------------------------
     sigma_u |  .86607694
     sigma_e |  .65909614
         rho |  .63325553   (fraction of variance due to u_i)
------------------------------------------------------------------------------
Model 2 with interaction term
Code:
  xtreg TobinsQ_w c.laggedGSCMP##i.laggedEMS Firmrisk_w Firmsize_w i.Industry i.year, re

Random-effects GLS regression                   Number of obs      =      3704
Group variable: ID                              Number of groups   =       463

R-sq:  within  = 0.1527                         Obs per group: min =         8
       between = 0.1935                                        avg =       8.0
       overall = 0.1787                                        max =         8

                                                Wald chi2(17)      =    682.62
corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000

-----------------------------------------------------------------------------------------
              TobinsQ_w |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
------------------------+----------------------------------------------------------------
            laggedGSCMP |  -.0258513   .1159604    -0.22   0.824    -.2531295    .2014269
            1.laggedEMS |  -.0137214   .0542992    -0.25   0.801    -.1201458    .0927031
                        |
laggedEMS#c.laggedGSCMP |
                     1  |  -.0117569   .1467287    -0.08   0.936    -.2993398    .2758261
                        |
             Firmrisk_w |   -.424106   .1317266    -3.22   0.001    -.6822853   -.1659267
             Firmsize_w |  -.2401096   .0258406    -9.29   0.000    -.2907562   -.1894631
                        |
               Industry |
                     2  |  -.5561707   .2070759    -2.69   0.007    -.9620319   -.1503094
                     3  |   .6347316   .1777639     3.57   0.000     .2863208    .9831425
                     4  |  -.3226728   .2412485    -1.34   0.181    -.7955111    .1501655
                     5  |  -.5064302   .1785666    -2.84   0.005    -.8564144    -.156446
                     6  |  -.2812923    .158771    -1.77   0.076    -.5924778    .0298932
                        |
                   year |
                  2008  |  -.6490783   .0437131   -14.85   0.000    -.7347544   -.5634021
                  2009  |  -.4359109   .0437189    -9.97   0.000    -.5215983   -.3502235
                  2010  |  -.2593825   .0437514    -5.93   0.000    -.3451336   -.1736313
                  2011  |  -.3797915   .0443713    -8.56   0.000    -.4667576   -.2928254
                  2012  |  -.2856803   .0445877    -6.41   0.000    -.3730705   -.1982901
                  2013  |   .1056095    .044617     2.37   0.018     .0181619    .1930571
                  2014  |   .1419346   .0457825     3.10   0.002     .0522025    .2316667
                        |
                  _cons |   4.229072   .2482444    17.04   0.000     3.742522    4.715622
------------------------+----------------------------------------------------------------
                sigma_u |  .86731741
                sigma_e |  .65914867
                    rho |  .63388308   (fraction of variance due to u_i)
-----------------------------------------------------------------------------------------