My second question is what does the output below tell me about school level random intercept? Many thanks!
Code:
mepoisson outcome i.predictor || schoolid:, irr vce(robust)
Fitting fixed-effects model:
Iteration 0: log likelihood = -375870.18
Iteration 1: log likelihood = -338880.27
Iteration 2: log likelihood = -338664.68
Iteration 3: log likelihood = -338664.62
Iteration 4: log likelihood = -338664.62
Refining starting values:
Grid node 0: log likelihood = -339189.54
Refining starting values (unscaled likelihoods):
Grid node 0: log likelihood = -339189.54
Fitting full model:
Iteration 0: log pseudolikelihood = -339189.54 (not concave)
Iteration 1: log pseudolikelihood = -336963 (not concave)
Iteration 2: log pseudolikelihood = -334774.5 (not concave)
Iteration 3: log pseudolikelihood = -333812.37 (not concave)
Iteration 4: log pseudolikelihood = -333069.64
Iteration 5: log pseudolikelihood = -332913.99
Iteration 6: log pseudolikelihood = -332905.67
Iteration 7: log pseudolikelihood = -332905.65
Mixed-effects Poisson regression Number of obs = 227,321
Group variable: cdscode Number of groups = 8,259
Obs per group:
min = 1
avg = 27.5
max = 476
Integration method: mvaghermite Integration pts. = 7
Wald chi2(1) = 55.73
Log pseudolikelihood = -332905.65 Prob > chi2 = 0.0000
(Std. Err. adjusted for 8,259 clusters in cdscode)
------------------------------------------------------------------------------
| Robust
outcome | IRR Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
|
1.predictor | 1.062885 .0086831 7.47 0.000 1.046002 1.08004
_cons | 1.497787 .0043098 140.40 0.000 1.489364 1.506258
-------------+----------------------------------------------------------------
schoolid |
var(_cons)| .0385252 .0016894 .0353524 .0419827
------------------------------------------------------------------------------
0 Response to Interpretation of multilevel poisson model
Post a Comment