My second question is what does the output below tell me about school level random intercept? Many thanks!
Code:
mepoisson outcome i.predictor || schoolid:, irr vce(robust) Fitting fixed-effects model: Iteration 0: log likelihood = -375870.18 Iteration 1: log likelihood = -338880.27 Iteration 2: log likelihood = -338664.68 Iteration 3: log likelihood = -338664.62 Iteration 4: log likelihood = -338664.62 Refining starting values: Grid node 0: log likelihood = -339189.54 Refining starting values (unscaled likelihoods): Grid node 0: log likelihood = -339189.54 Fitting full model: Iteration 0: log pseudolikelihood = -339189.54 (not concave) Iteration 1: log pseudolikelihood = -336963 (not concave) Iteration 2: log pseudolikelihood = -334774.5 (not concave) Iteration 3: log pseudolikelihood = -333812.37 (not concave) Iteration 4: log pseudolikelihood = -333069.64 Iteration 5: log pseudolikelihood = -332913.99 Iteration 6: log pseudolikelihood = -332905.67 Iteration 7: log pseudolikelihood = -332905.65 Mixed-effects Poisson regression Number of obs = 227,321 Group variable: cdscode Number of groups = 8,259 Obs per group: min = 1 avg = 27.5 max = 476 Integration method: mvaghermite Integration pts. = 7 Wald chi2(1) = 55.73 Log pseudolikelihood = -332905.65 Prob > chi2 = 0.0000 (Std. Err. adjusted for 8,259 clusters in cdscode) ------------------------------------------------------------------------------ | Robust outcome | IRR Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- | 1.predictor | 1.062885 .0086831 7.47 0.000 1.046002 1.08004 _cons | 1.497787 .0043098 140.40 0.000 1.489364 1.506258 -------------+---------------------------------------------------------------- schoolid | var(_cons)| .0385252 .0016894 .0353524 .0419827 ------------------------------------------------------------------------------
0 Response to Interpretation of multilevel poisson model
Post a Comment