My second question is what does the output below tell me about school level random intercept? Many thanks!
Code:
mepoisson outcome i.predictor || schoolid:, irr vce(robust)
Fitting fixed-effects model:
Iteration 0:   log likelihood = -375870.18  
Iteration 1:   log likelihood = -338880.27  
Iteration 2:   log likelihood = -338664.68  
Iteration 3:   log likelihood = -338664.62  
Iteration 4:   log likelihood = -338664.62  
Refining starting values:
Grid node 0:   log likelihood = -339189.54
Refining starting values (unscaled likelihoods):
Grid node 0:   log likelihood = -339189.54
Fitting full model:
Iteration 0:   log pseudolikelihood = -339189.54  (not concave)
Iteration 1:   log pseudolikelihood =    -336963  (not concave)
Iteration 2:   log pseudolikelihood =  -334774.5  (not concave)
Iteration 3:   log pseudolikelihood = -333812.37  (not concave)
Iteration 4:   log pseudolikelihood = -333069.64  
Iteration 5:   log pseudolikelihood = -332913.99  
Iteration 6:   log pseudolikelihood = -332905.67  
Iteration 7:   log pseudolikelihood = -332905.65  
Mixed-effects Poisson regression                Number of obs     =    227,321
Group variable:         cdscode                 Number of groups  =      8,259
                                                Obs per group:
                                                              min =          1
                                                              avg =       27.5
                                                              max =        476
Integration method: mvaghermite                 Integration pts.  =          7
                                                Wald chi2(1)      =      55.73
Log pseudolikelihood = -332905.65               Prob > chi2       =     0.0000
                            (Std. Err. adjusted for 8,259 clusters in cdscode)
------------------------------------------------------------------------------
             |               Robust
 outcome |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
             |
  1.predictor |   1.062885   .0086831     7.47   0.000     1.046002     1.08004
       _cons |   1.497787   .0043098   140.40   0.000     1.489364    1.506258
-------------+----------------------------------------------------------------
schoolid      |
   var(_cons)|   .0385252   .0016894                      .0353524    .0419827
------------------------------------------------------------------------------
0 Response to Interpretation of multilevel poisson model
Post a Comment