Code:
sysuse census.data, clear tab region Census | region | Freq. Percent Cum. ------------+----------------------------------- NE | 9 18.00 18.00 N Cntrl | 12 24.00 42.00 South | 16 32.00 74.00 West | 13 26.00 100.00 ------------+----------------------------------- Total | 50 100.00 reg medage i.region Source | SS df MS Number of obs = 50 -------------+------------------------------ F( 3, 46) = 7.56 Model | 46.3961903 3 15.4653968 Prob > F = 0.0003 Residual | 94.1237947 46 2.04616945 R-squared = 0.3302 -------------+------------------------------ Adj R-squared = 0.2865 Total | 140.519985 49 2.8677548 Root MSE = 1.4304 ------------------------------------------------------------------------------ medage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- region | N Cntrl | -1.708333 .6307664 -2.71 0.009 -2.978 -.4386663 South | -1.614583 .5960182 -2.71 0.009 -2.814306 -.4148606 West | -2.948718 .620282 -4.75 0.000 -4.197281 -1.700155 | _cons | 31.23333 .4768146 65.50 0.000 30.27356 32.19311 ------------------------------------------------------------------------------
Code:
contrast ar.region Contrasts of marginal linear predictions Margins : asbalanced ------------------------------------------------------- | df F P>F --------------------+---------------------------------- region | (N Cntrl vs NE) | 1 7.34 0.0095 (South vs N Cntrl) | 1 0.03 0.8645 (West vs South) | 1 6.24 0.0161 Joint | 3 7.56 0.0003 | Denominator | 46 ------------------------------------------------------- --------------------------------------------------------------------- | Contrast Std. Err. [95% Conf. Interval] --------------------+------------------------------------------------ region | (N Cntrl vs NE) | -1.708333 .6307664 -2.978 -.4386663 (South vs N Cntrl) | .0937502 .5462597 -1.005814 1.193314 (West vs South) | -1.334135 .5341191 -2.409261 -.2590085 --------------------------------------------------------------------- matrix list r(table) r(table)[9,3] ar2vs1. ar3vs2. ar4vs3. region region region b -1.7083332 .09375016 -1.3341345 se .63076642 .54625975 .53411913 t -2.7083452 .17162194 -2.497822 pvalue .00946336 .86448754 .01613433 ll -2.9780002 -1.0058137 -2.4092605 ul -.43866627 1.193314 -.25900847 df 46 46 46 crit 2.0128956 2.0128956 2.0128956 eform 0 0 0
0 Response to get matrix of all possible contrasts for a single factor variable after reg
Post a Comment