I would be so pleased to get some help concerning the following issue:
I have done with the Difference-in-differences analysis. My treatment is at the county level. Each county received the treatment at a certian point in time.
I would want to proceed with the Propensity Score Matching as an extension procedure and get results for DID-Matching. I know everything about PSM, however, I am not quite sure how to get the STATA command in order to:
- generate Pre- and Post-treatment dummies since I don't have a treatment at one point in time; i.e. DD is staggered.
- use the DD with pscore
The data example is as follows (PS, I have not used all the covariates in the example bellow, just to save space and not to overwrite):
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float treatment double(outcome median_age) str17 county double Graduates float chinaratio double price float outcome_date int treatment_date 0 977.6230030012131 . "alameda" . 0 2019285 2006 2009 0 186.4290008544922 49.1 "amador" 5.1 0 109700 2013 . 1 5018.5009333491325 36.8 "butte" 8.3 2.020202 86220.2734375 2015 2013 0 26.644999694824218 48.5 "calaveras" 6.6 0 218429.453125 2010 2016 1 5633.800985813141 34.7 "colusa" 3.4 0 165693.703125 2016 2014 1 9848.898022890091 39.2 "contracosta" 14.9 0 123313.8671875 2017 2010 0 1171.5039973258972 . "eldorado" . 0 . 2006 2015 1 18139.15609360695 30.7 "fresno" 6.3 1.2623686 1477646.126818182 2012 2011 1 2403.0899991989136 . "glenn" . .3584229 182184.390625 2018 2014 0 3.865000009536743 . "humboldt" . 0 . 2001 2015 0 11.725000381469727 32.2 "imperial" 4.4 0 33500 2017 2018 0 130.51142597198486 45.7 "inyo" 8 11.11111 95511 2012 2016 1 49581.69443356991 31.2 "kern" 5.2 1.199577 431813.025 2016 2010 0 2.6500000953674316 . "kings" . 0 . 2002 2015 0 118.67999811935425 . "lake" . 0 2784842.75 2007 . 0 188.26600074768066 36.2 "lassen" 4.5 0 212319 2017 . 1 15421.118027787208 35.6 "losangeles" 10.5 1.6742994 432154.2635365853 2015 2010 0 372.9580023670197 . "madera" . 0 1088171.75 2007 2014 1 950.754987192154 45.1 "marin" 24 3.5714285 337785.375 2014 2012 0 596.9810292720795 48.4 "mariposa" 7 0 . 2011 2015 1 955.7599940299988 42.4 "mendocino" 8.4 9.523809 203997.421875 2017 2014 0 118.22599649429321 . "merced" . 0 . 2004 2013 0 17.968571462631225 37.2 "mono" 9.3 0 50230 2014 2014 1 13381.888020515442 . "monterey" . 4.1666665 475311.1875 2018 2014 0 1652.3920265712738 39.3 "napa" 10.5 0 297411.843125 2009 2012 0 41.76599884033203 . "nevada" . 0 . 2003 2016 1 12751.384747743607 . "orange" . 1.635514 594329.4550965099 2018 2013 1 2941.57594871521 41 "placer" 12 3.472222 30934.466796875 2015 2009 0 36.129999947547915 49.9 "plumas" 9.4 0 95743.4296875 2013 . 0 8294.275227535247 . "riverside" . 0 2403835.644375 2008 2008 0 170.242998752594 34.6 "sacramento" 8.9 0 1193160.5 2010 2013 0 318.01400032043455 33.7 "sanbenito" 5.1 0 738047.9554166667 2010 2016 0 3975.420595321655 . "sanbernardino" . 0 2746432.4444444445 2006 2009 0 1801.7347531318665 . "sandiego" . 0 390164.2361111111 2003 2010 0 121.97300136089325 . "sanfrancisco" . 0 . 2005 2010 0 11213.282019805909 33.2 "sanjoaquin" 5.7 1.1641929 2654699.005 2014 2014 0 3127.586973787308 . "sanluisobispo" . 0 999652.3431250001 2008 2010 0 61.30000066757202 . "sanmateo" . 0 . 2004 2010 0 486.6688573074341 . "santabarbara" . 0 1535883.9627083333 2006 2015 0 8.059000015258789 . "santaclara" . 0 . 2000 2009 0 638.5910001277923 . "santacruz" . 0 750463.62625 2007 2010 0 1930.181016921997 42.2 "shasta" 6.8 8.823529 73866 2015 2016 0 1.7300000190734863 51.6 "sierra" 5.6 0 . 2012 . 0 3250.1130371284485 35.9 "solano" 7 20 3075822.675 2009 2009 0 1748.7119809389114 . "sonoma" . 0 . 2004 2009 0 645.8740153312683 32.6 "stanislaus" 5.2 0 303344 2011 2014 0 446.34900802612304 34.5 "sutter" 5 0 82638.25 2012 2012 0 2279.308996319771 40.6 "tehama" 4.6 0 163665.90625 2016 2018 1 19601.44639503479 30.3 "tulare" 4.3 18.227596 1216182.9858163265 2015 2011 0 7.289999771118164 45.9 "tuolumne" 6.1 0 16832.5 2009 . 0 699.3892369270325 . "ventura" . 0 2867200 2003 2014 0 1174.821017074585 . "yolo" . 0 1165226.5 2007 2011 0 687.8650116920471 32.1 "yuba" 4.5 0 88120.2890625 2015 2015 1 5567.919020372391 36.4 "alameda" 16.6 4.2375884 1056647.9375 2011 2009 1 8763.080038547516 37.1 "alameda" 18 .9803922 85849.28125 2015 2009 1 10110.525970374107 36.2 "alameda" 16.3 7.158948 1306180.638382353 2010 2009 0 5595.163978595734 . "alameda" . 0 1180082.8805555555 2007 2009 0 5213.825936393738 36.1 "alameda" 16 0 811276.8029166667 2009 2009 1 13239.111066102982 37.3 "alameda" 19 .764526 294720.90625 2017 2009 1 9636.29299182892 36.8 "alameda" 17.2 1.6851852 541313.88625 2013 2009 1 14981.315011024475 . "alameda" . 2.0833333 187289.140625 2018 2009 0 69.0370020866394 . "alameda" . 0 . 2002 2009 1 8848.585966467857 37.2 "alameda" 18.5 1.488673 227775.03125 2016 2009 0 2986.469010679245 . "alameda" . 7.142857 1294418.6735714285 2008 2009 0 1038.2130085229874 . "alameda" . 0 . 2004 2009 1 7629.609037940979 36.9 "alameda" 17.5 1.4699074 1279580.8625 2014 2009 0 2641.6559681892395 . "alameda" . 0 . 2005 2009 1 7827.785046882629 36.6 "alameda" 16.8 6.208333 542930.591125 2012 2009 0 924.9690197706223 . "alameda" . 0 . 2003 2009 0 12.899999618530273 . "amador" . 0 . 2004 . 0 210.7160016298294 50.3 "amador" 6.9 0 72191.6640625 2016 . 0 555.8660011291504 . "amador" . 0 209160.375 2018 . 0 258.14600563049316 . "amador" . 0 293817.75 2008 . 0 213.392000579834 . "amador" . 0 218393.72770833335 2007 . 0 39.49600019454956 47.2 "amador" 5.8 0 72759.80078125 2010 . 0 2.015000104904175 . "amador" . 0 . 2001 . 0 20.483999133110046 . "amador" . 0 . 2006 . 0 252.5989990234375 48.4 "amador" 4.8 0 4034958.5 2012 . 0 2.2869999408721924 . "amador" . 0 . 2002 . 0 155.96100211143494 48 "amador" 5.7 0 1041219.1875 2011 . 0 2059.2509994506836 50.6 "amador" 7.3 10 362101.90625 2017 . 0 18.808000087738037 49.6 "amador" 6.2 0 . 2014 . 0 126.29799842834473 50 "amador" 6.6 0 47183.33203125 2015 . 0 7 46.3 "amador" 6.1 0 102867.3359375 2009 . 0 105.51700210571289 . "amador" . 0 . 2005 . 0 272.96199798583984 . "butte" . 0 . 2003 2013 0 992.7100081443787 . "butte" . 0 . 2005 2013 0 4762.09196833229 37.2 "butte" 8.1 0 1324352.9196428573 2010 2013 0 376.8860079050064 . "butte" . 0 7129597 2006 2013 0 20.935999870300293 . "butte" . 0 . 2002 2013 1 7265.540008544922 36.9 "butte" 8.7 0 160430.625 2016 2013 0 2035.965983390808 . "butte" . 0 . 2004 2013 1 2811.237986087799 . "butte" . 2.3245614 122259.6484375 2018 2013 1 1517.4980118751525 36.9 "butte" 8.4 .12755102 514816.765625 2014 2013 0 1722.6520069503783 37 "butte" 8.2 .16666666 95047.46828125001 2013 2013 1 7542.768997192383 36.9 "butte" 8.9 0 242201.078125 2017 2013 0 772.7609907150269 . "butte" . 0 2529700.625 2007 2013 0 2624.578981103897 . "butte" . 0 795442.9375 2008 2013 0 7879.005087003708 37.2 "butte" 7.9 11.416667 598783.10625 2011 2013 0 810.153014626503 36.6 "butte" 8.4 0 526406.796875 2009 2013 end
Many thanks in advance,
Ali
0 Response to Difference-in-Differences Matching with Multiple Periods Treatment
Post a Comment