I am interested to analyze bmizpre over time by gender, drug, "bmicategory " and "diseasetype" with random effects for subject.
My question is do I have to run different univariate model included time, the covariate, and the interaction between time and the covariate ?
This is the command that I used:
Code:
mixed bmizpre gender##c.point || ptid: point
Following is the output
Code:
mixed bmizpre gender##c.point || ptid: point
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -46.530546
Iteration 1: log likelihood = -45.773561
Iteration 2: log likelihood = -45.698352
Iteration 3: log likelihood = -45.698038
Iteration 4: log likelihood = -45.698038
Computing standard errors:
Mixed-effects ML regression Number of obs = 32
Group variable: ptid Number of groups = 16
Obs per group:
min = 2
avg = 2.0
max = 2
Wald chi2(3) = 1.46
Log likelihood = -45.698038 Prob > chi2 = 0.6918
--------------------------------------------------------------------------------
bmizpre | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------+----------------------------------------------------------------
1.gender | .1375 .5429129 0.25 0.800 -.9265897 1.20159
point | .225625 .1912063 1.18 0.238 -.1491324 .6003824
|
gender#c.point |
1 | -.179375 .2704065 -0.66 0.507 -.709362 .350612
|
_cons | -.21125 .3838974 -0.55 0.582 -.9636751 .541175
--------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
ptid: Independent |
var(point) | 1.06e-18 1.40e-17 6.07e-30 1.86e-07
var(_cons) | .5940602 .3300578 .1999428 1.765042
-----------------------------+------------------------------------------------
var(Residual) | .5849574 .2068139 .2925356 1.169687
------------------------------------------------------------------------------
LR test vs. linear model: chi2(2) = 4.69 Prob > chi2 = 0.0960
Note: LR test is conservative and provided only for reference.
0 Response to Linear mixed effects models with random effects for subject
Post a Comment