I am regressing debt ratio against profitability, size etc. dy are the years, and dc are life cycle of firms, and ind are industries.
Seeing this results, is there anything I should be concerned about?
Actually the thesis that I refer to, has the same number of dy and dc but only one industry dummy, but here I created more industry dummies so I am not so sure.
Appreciate if anyone could help. Thank you.
Code:
. reg totaldebtmarketvalue profitability size salesgrowth tangibility nontaxdebt liquidity dy1 dy2 dy3 dy4 dy5 dy6 > dy7 dy8 dy9 dc1 dc2 dc3 dc4 ind1 ind2 ind3 ind5 ind6 ind7 ind8 ind9 ind10 Source | SS df MS Number of obs = 4,820 -------------+---------------------------------- F(28, 4791) = 86.42 Model | 86.829243 28 3.10104439 Prob > F = 0.0000 Residual | 171.918517 4,791 .03588364 R-squared = 0.3356 -------------+---------------------------------- Adj R-squared = 0.3317 Total | 258.74776 4,819 .053693248 Root MSE = .18943 ------------------------------------------------------------------------------- totaldebtma~e | Coef. Std. Err. t P>|t| [95% Conf. Interval] --------------+---------------------------------------------------------------- profitability | -.4817474 .0236452 -20.37 0.000 -.5281029 -.435392 size | .0331574 .0020903 15.86 0.000 .0290595 .0372554 salesgrowth | .0018625 .0011357 1.64 0.101 -.000364 .0040891 tangibility | .0822787 .0151707 5.42 0.000 .052537 .1120203 nontaxdebt | -.5633339 .1152644 -4.89 0.000 -.789305 -.3373628 liquidity | -.0106057 .0004338 -24.45 0.000 -.0114562 -.0097552 dy1 | -.0598851 .0122223 -4.90 0.000 -.0838463 -.0359238 dy2 | -.0835679 .0122264 -6.84 0.000 -.1075372 -.0595986 dy3 | -.0755893 .0122124 -6.19 0.000 -.0995312 -.0516475 dy4 | -.0789071 .0122277 -6.45 0.000 -.102879 -.0549352 dy5 | -.1193103 .0122344 -9.75 0.000 -.1432953 -.0953253 dy6 | -.1279573 .0122498 -10.45 0.000 -.1519726 -.103942 dy7 | -.1339691 .0122584 -10.93 0.000 -.1580011 -.109937 dy8 | -.1303951 .0122818 -10.62 0.000 -.154473 -.1063171 dy9 | -.142779 .0123201 -11.59 0.000 -.166932 -.1186259 dc1 | .0554025 .0098219 5.64 0.000 .036147 .074658 dc2 | .0427338 .0076047 5.62 0.000 .0278252 .0576424 dc3 | .012387 .0081153 1.53 0.127 -.0035227 .0282967 dc4 | .0677144 .0112457 6.02 0.000 .0456678 .0897611 ind1 | -.0521258 .007409 -7.04 0.000 -.0666509 -.0376007 ind2 | .0116828 .0165759 0.70 0.481 -.0208136 .0441792 ind3 | -.2127064 .021915 -9.71 0.000 -.25567 -.1697429 ind5 | -.1892949 .0134049 -14.12 0.000 -.2155746 -.1630151 ind6 | .0076983 .009576 0.80 0.421 -.011075 .0264716 ind7 | -.1085723 .0105618 -10.28 0.000 -.1292782 -.0878665 ind8 | -.1258606 .0166844 -7.54 0.000 -.1585697 -.0931516 ind9 | -.0617338 .0150073 -4.11 0.000 -.0911551 -.0323126 ind10 | -.0443932 .0220523 -2.01 0.044 -.0876259 -.0011605 _cons | .1446462 .0284044 5.09 0.000 .0889605 .2003319 -------------------------------------------------------------------------------
0 Response to Regression results
Post a Comment