Dear all,

I am studying the determinants of peer group composition and use panel data with a sample period between 2006-2016.
However, I'm facing an issue regarding the measurement of fixed effects.

My dataset looks as following;
Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input long main_cik double year float(dropped rel_ROA_w isCompPeer main_CEO_turnover rel_at sic_dummy2 sic_dummy3 corrxy main_CEOduality)
2488 2006 0  -.11691028 1 0   -2.679014 1 1         -1 0
2488 2006 0  -.11691028 1 0   -2.679014 1 1         -1 0
2488 2006 0  -.11691028 1 0   -2.679014 1 1         -1 0
2488 2006 0  -.11691028 1 0   -2.679014 1 1         -1 0
2488 2006 0  -.11691028 1 0   -2.679014 1 1         -1 0
2488 2006 0   -.2020019 1 0  -.05955731 1 1         -1 0
2488 2006 0   -.2020019 1 0  -.05955731 1 1         -1 0
2488 2006 0   -.2020019 1 0  -.05955731 1 1         -1 0
2488 2006 0   -.2020019 1 0  -.05955731 1 1         -1 0
2488 2006 0   -.2020019 1 0  -.05955731 1 1         -1 0
2488 2006 0 -.031219125 0 0    .8384784 1 1          1 0
2488 2006 0 -.031219125 0 0    .8384784 1 1          1 0
2488 2006 0 -.031219125 0 0    .8384784 1 1          1 0
2488 2006 0 -.031219125 0 0    .8384784 1 1          1 0
2488 2006 0 -.031219125 0 0    .8384784 1 1          1 0
2969 2015 0 .0041524395 1 0    .5056937 0 0          1 1
2969 2015 0 .0041524395 1 0    .5056937 0 0          1 1
2969 2015 0 .0041524395 1 0    .5056937 0 0          1 1
2969 2015 0 .0041524395 1 0    .5056937 0 0          1 1
2969 2015 0 .0041524395 1 0    .5056937 0 0          1 1
2969 2015 0   .02739468 1 0   -1.360693 1 0          1 1
2969 2015 0   .02739468 1 0   -1.360693 1 0          1 1
2969 2015 0   .02739468 1 0   -1.360693 1 0          1 1
2969 2015 0   .02739468 1 0   -1.360693 1 0          1 1
2969 2015 0   .02739468 1 0   -1.360693 1 0          1 1
2969 2015 0  .019526236 1 0 -.069021285 1 0         -1 1
2969 2015 0  .019526236 1 0 -.069021285 1 0         -1 1
2969 2015 0  .019526236 1 0 -.069021285 1 0         -1 1
2969 2015 0  .019526236 1 0 -.069021285 1 0         -1 1
2969 2015 0  .019526236 1 0 -.069021285 1 0         -1 1
2969 2015 0  -.04745034 1 0   .09800953 0 0          1 1
2969 2015 0  -.04745034 1 0   .09800953 0 0          1 1
2969 2015 0  -.04745034 1 0   .09800953 0 0          1 1
2969 2015 0  -.04745034 1 0   .09800953 0 0          1 1
2969 2015 0  -.04745034 1 0   .09800953 0 0          1 1
2969 2015 0 -.009038955 1 0   .29493254 0 0          1 1
2969 2015 0 -.009038955 1 0   .29493254 0 0          1 1
2969 2015 0 -.009038955 1 0   .29493254 0 0          1 1
2969 2015 0 -.009038955 1 0   .29493254 0 0          1 1
2969 2015 0 -.009038955 1 0   .29493254 0 0          1 1
2969 2015 0  .019391946 1 0  -1.7653357 0 0          1 1
2969 2015 0  .019391946 1 0  -1.7653357 0 0          1 1
2969 2015 0  .019391946 1 0  -1.7653357 0 0          1 1
2969 2015 0  .019391946 1 0  -1.7653357 0 0          1 1
2969 2015 0  .019391946 1 0  -1.7653357 0 0          1 1
2969 2015 0 -.011165775 1 0  -.05051582 1 1          1 1
2969 2015 0 -.011165775 1 0  -.05051582 1 1          1 1
2969 2015 0 -.011165775 1 0  -.05051582 1 1          1 1
2969 2015 0 -.011165775 1 0  -.05051582 1 1          1 1
2969 2015 0 -.011165775 1 0  -.05051582 1 1          1 1
2969 2015 0   .01896139 1 0   .10477632 1 0          1 1
2969 2015 0   .01896139 1 0   .10477632 1 0          1 1
2969 2015 0   .01896139 1 0   .10477632 1 0          1 1
2969 2015 0   .01896139 1 0   .10477632 1 0          1 1
2969 2015 0   .01896139 1 0   .10477632 1 0          1 1
2969 2015 0  -.05593555 1 0     .632718 0 0          1 1
2969 2015 0  -.05593555 1 0     .632718 0 0          1 1
2969 2015 0  -.05593555 1 0     .632718 0 0          1 1
2969 2015 0  -.05593555 1 0     .632718 0 0          1 1
2969 2015 0  -.05593555 1 0     .632718 0 0          1 1
4127 2014 0   .06216906 1 0  -1.3067086 1 1   .4036001 0
4127 2014 0   .06216906 1 0  -1.3067086 1 1   .4036001 0
4127 2014 0   .06216906 1 0  -1.3067086 1 1   .4036001 0
4127 2014 0   .06216906 1 0  -1.3067086 1 1   .4036001 0
4127 2014 0   .06216906 1 0  -1.3067086 1 1   .4036001 0
4127 2015 0    .1159539 1 0   -.8987412 1 1   .4036001 0
4127 2015 0    .1159539 1 0   -.8987412 1 1   .4036001 0
4127 2015 0    .1159539 1 0   -.8987412 1 1   .4036001 0
4127 2015 0    .1159539 1 0   -.8987412 1 1   .4036001 0
4127 2015 0    .1159539 1 0   -.8987412 1 1   .4036001 0
4127 2014 0   .14269203 1 0   .30691504 1 1          1 0
4127 2014 0   .14269203 1 0   .30691504 1 1          1 0
4127 2014 0   .14269203 1 0   .30691504 1 1          1 0
4127 2014 0   .14269203 1 0   .30691504 1 1          1 0
4127 2014 0   .14269203 1 0   .30691504 1 1          1 0
4127 2015 0    .1801022 1 0    .3412647 1 1          1 0
4127 2015 0    .1801022 1 0    .3412647 1 1          1 0
4127 2015 0    .1801022 1 0    .3412647 1 1          1 0
4127 2015 1    .1801022 1 0    .3412647 1 1          1 0
4127 2015 0    .1801022 1 0    .3412647 1 1          1 0
4127 2014 0   .02156958 1 0   -.6470728 1 1  -.9892372 0
4127 2014 0   .02156958 1 0   -.6470728 1 1  -.9892372 0
4127 2014 0   .02156958 1 0   -.6470728 1 1  -.9892372 0
4127 2014 0   .02156958 1 0   -.6470728 1 1  -.9892372 0
4127 2014 0   .02156958 1 0   -.6470728 1 1  -.9892372 0
4127 2015 0   .10041837 1 0  -.29675594 1 1  -.9892372 0
4127 2015 0   .10041837 1 0  -.29675594 1 1  -.9892372 0
4127 2015 0   .10041837 1 0  -.29675594 1 1  -.9892372 0
4127 2015 0   .10041837 1 0  -.29675594 1 1  -.9892372 0
4127 2015 0   .10041837 1 0  -.29675594 1 1  -.9892372 0
4127 2014 0  -.12391421 1 0    .4432786 1 1 -.04774367 0
4127 2014 0  -.12391421 1 0    .4432786 1 1 -.04774367 0
4127 2014 0  -.12391421 1 0    .4432786 1 1 -.04774367 0
4127 2014 0  -.12391421 1 0    .4432786 1 1 -.04774367 0
4127 2014 0  -.12391421 1 0    .4432786 1 1 -.04774367 0
4127 2015 0  -.06187664 1 0    .4934455 1 1 -.04774367 0
4127 2015 0  -.06187664 1 0    .4934455 1 1 -.04774367 0
4127 2015 0  -.06187664 1 0    .4934455 1 1 -.04774367 0
4127 2015 0  -.06187664 1 0    .4934455 1 1 -.04774367 0
4127 2015 0  -.06187664 1 0    .4934455 1 1 -.04774367 0
end


I want to do a logistic regression using industry and year fixed effects (main_cik and year) and cluster by main_cik.
I used the following formula:

areg dropped rel_ROA_w isCompPeer main_CEO_turnover rel_at sic_dummy2 sic_dummy3 corrxy main_CEOduality main_abo_medStockOwn, a(main_cik) cluster(main_cik)

The problem is that I can only include one fixed effect. Therefore, my question is: how can i include fixed effects for both year and main_cik?

Thanks for the help.

Best regards,

Patrick.