Here is my data and I am running cox proportional hazard model using the code. When I do not cluster st errors, the p-values corresponding to the following variables are significant: ideal_distance ideal_larger_zero d_dist_exceed. However, when I cluster them, they lose their significance. Why is that the case? Thank you in advance.
stcox i.male ideal_distance ideal_larger_zero d_dist_exceed mother_age mother_age_sqr i.survey_year i.SEDUC i.rural_urban i.wealth_index i.quarter_of_birth if B0_01==0, robust cluster(CASEID) nohr
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float(male ideal_distance ideal_larger_zero d_dist_exceed mother_age mother_age_sqr survey_year) double SEDUC float(rural_urban wealth_index quarter_of_birth) double B0_01 byte(_st _d) double _t byte _t0 str15 CASEID float age_months_new 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 .5 0 " 10110 2" .5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 1.5 0 " 10110 2" 1.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 2.5 0 " 10110 2" 2.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 3.5 0 " 10110 2" 3.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 4.5 0 " 10110 2" 4.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 5.5 0 " 10110 2" 5.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 6.5 0 " 10110 2" 6.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 7.5 0 " 10110 2" 7.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 8.5 0 " 10110 2" 8.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 9.5 0 " 10110 2" 9.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 10.5 0 " 10110 2" 10.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 11.5 0 " 10110 2" 11.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 12.5 0 " 10110 2" 12.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 13.5 0 " 10110 2" 13.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 14.5 0 " 10110 2" 14.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 15.5 0 " 10110 2" 15.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 16.5 0 " 10110 2" 16.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 17.5 0 " 10110 2" 17.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 18.5 0 " 10110 2" 18.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 19.5 0 " 10110 2" 19.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 0 20.5 0 " 10110 2" 20.5 1 0 1 0 36 1296 2008 3 1 5 1 0 1 1 21.5 0 " 10110 2" 21.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 0 .5 0 " 102 3 2" .5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 0 1.5 0 " 102 3 2" 1.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 0 2.5 0 " 102 3 2" 2.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 0 3.5 0 " 102 3 2" 3.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 0 4.5 0 " 102 3 2" 4.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 0 5.5 0 " 102 3 2" 5.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 0 6.5 0 " 102 3 2" 6.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 0 7.5 0 " 102 3 2" 7.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 0 8.5 0 " 102 3 2" 8.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 0 9.5 0 " 102 3 2" 9.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 0 10.5 0 " 102 3 2" 10.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 0 11.5 0 " 102 3 2" 11.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 0 12.5 0 " 102 3 2" 12.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 0 13.5 0 " 102 3 2" 13.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 0 14.5 0 " 102 3 2" 14.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 0 15.5 0 " 102 3 2" 15.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 0 16.5 0 " 102 3 2" 16.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 0 17.5 0 " 102 3 2" 17.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 18.5 0 " 102 3 2" 18.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 19.5 0 " 102 3 2" 19.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 20.5 0 " 102 3 2" 20.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 21.5 0 " 102 3 2" 21.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 22.5 0 " 102 3 2" 22.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 23.5 0 " 102 3 2" 23.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 24.5 0 " 102 3 2" 24.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 25.5 0 " 102 3 2" 25.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 26.5 0 " 102 3 2" 26.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 27.5 0 " 102 3 2" 27.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 28.5 0 " 102 3 2" 28.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 29.5 0 " 102 3 2" 29.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 30.5 0 " 102 3 2" 30.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 31.5 0 " 102 3 2" 31.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 32.5 0 " 102 3 2" 32.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 33.5 0 " 102 3 2" 33.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 34.5 0 " 102 3 2" 34.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 35.5 0 " 102 3 2" 35.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 36.5 0 " 102 3 2" 36.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 37.5 0 " 102 3 2" 37.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 38.5 0 " 102 3 2" 38.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 39.5 0 " 102 3 2" 39.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 40.5 0 " 102 3 2" 40.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 41.5 0 " 102 3 2" 41.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 42.5 0 " 102 3 2" 42.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 43.5 0 " 102 3 2" 43.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 44.5 0 " 102 3 2" 44.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 45.5 0 " 102 3 2" 45.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 46.5 0 " 102 3 2" 46.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 47.5 0 " 102 3 2" 47.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 48.5 0 " 102 3 2" 48.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 49.5 0 " 102 3 2" 49.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 50.5 0 " 102 3 2" 50.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 51.5 0 " 102 3 2" 51.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 52.5 0 " 102 3 2" 52.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 53.5 0 " 102 3 2" 53.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 54.5 0 " 102 3 2" 54.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 55.5 0 " 102 3 2" 55.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 56.5 0 " 102 3 2" 56.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 57.5 0 " 102 3 2" 57.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 58.5 0 " 102 3 2" 58.5 1 0 1 0 32 1024 2008 1 1 2 4 0 1 1 59.5 0 " 102 3 2" 59.5 0 -1 0 0 37 1369 2008 3 1 4 2 0 1 0 .5 0 " 10217 1" .5 0 -1 0 0 37 1369 2008 3 1 4 2 0 1 0 1.5 0 " 10217 1" 1.5 0 -1 0 0 37 1369 2008 3 1 4 2 0 1 0 2.5 0 " 10217 1" 2.5 0 -1 0 0 37 1369 2008 3 1 4 2 0 1 0 3.5 0 " 10217 1" 3.5 0 -1 0 0 37 1369 2008 3 1 4 2 0 1 0 4.5 0 " 10217 1" 4.5 0 -1 0 0 37 1369 2008 3 1 4 2 0 1 0 5.5 0 " 10217 1" 5.5 0 -1 0 0 37 1369 2008 3 1 4 2 0 1 0 6.5 0 " 10217 1" 6.5 0 -1 0 0 37 1369 2008 3 1 4 2 0 1 0 7.5 0 " 10217 1" 7.5 0 -1 0 0 37 1369 2008 3 1 4 2 0 1 0 8.5 0 " 10217 1" 8.5 0 -1 0 0 37 1369 2008 3 1 4 2 0 1 0 9.5 0 " 10217 1" 9.5 0 -1 0 0 37 1369 2008 3 1 4 2 0 1 0 10.5 0 " 10217 1" 10.5 0 -1 0 0 37 1369 2008 3 1 4 2 0 1 0 11.5 0 " 10217 1" 11.5 0 -1 0 0 37 1369 2008 3 1 4 2 0 1 0 12.5 0 " 10217 1" 12.5 0 -1 0 0 37 1369 2008 3 1 4 2 0 1 0 13.5 0 " 10217 1" 13.5 0 -1 0 0 37 1369 2008 3 1 4 2 0 1 0 14.5 0 " 10217 1" 14.5 0 -1 0 0 37 1369 2008 3 1 4 2 0 1 0 15.5 0 " 10217 1" 15.5 0 -1 0 0 37 1369 2008 3 1 4 2 0 1 0 16.5 0 " 10217 1" 16.5 0 -1 0 0 37 1369 2008 3 1 4 2 0 1 0 17.5 0 " 10217 1" 17.5 end label values male male label def male 0 "Female", modify label def male 1 "Male", modify label values SEDUC SEDUC label def SEDUC 1 "Complete primary", modify label def SEDUC 3 "Complete high school / higher", modify label values rural_urban rural_urban label def rural_urban 1 "Urban", modify label values wealth_index wealth_index label def wealth_index 2 "Poorer", modify label def wealth_index 4 "Rich", modify label def wealth_index 5 "Richest", modify label values B0_01 B0_01 label def B0_01 0 "Single birth", modify
0 Response to P-values become insignificant when st errors are clustered
Post a Comment