Hello everyone,

I have panel data with 163 countries and 15 time units (months). I am trying to include interaction terms (between a dummy variable and time-dummy variables) in a random-effects regression. The first dummy variable (country_system) is equal to 1 if a country has a federal system, 0 otherwise. This is a sample of my data:

Code:
* Example generated by -dataex-. For more info, type help dataex
clear
input str8 country float(date country_system total_cases_per_million total_tests_per_thousand total_vaccinations_per_hundred median_age aged_65_older gdp_per_capita population_density hospital_beds_per_thousand)
"AFG" 721 0      .026      .    . 18.6  2.581 1803.987  54.422   .5
"AFG" 722 0     4.495      .    . 18.6  2.581 1803.987  54.422   .5
"AFG" 723 0    54.639      .    . 18.6  2.581 1803.987  54.422   .5
"AFG" 724 0   390.667      .    . 18.6  2.581 1803.987  54.422   .5
"AFG" 725 0   809.359      .    . 18.6  2.581 1803.987  54.422   .5
"AFG" 726 0   941.859      .    . 18.6  2.581 1803.987  54.422   .5
"AFG" 727 0   980.237      .    . 18.6  2.581 1803.987  54.422   .5
"AFG" 728 0  1008.725      .    . 18.6  2.581 1803.987  54.422   .5
"AFG" 729 0  1064.135      .    . 18.6  2.581 1803.987  54.422   .5
"AFG" 730 0  1188.697      .    . 18.6  2.581 1803.987  54.422   .5
"AFG" 731 0  1323.612      .    . 18.6  2.581 1803.987  54.422   .5
"AFG" 732 0  1413.443      .    . 18.6  2.581 1803.987  54.422   .5
"AFG" 733 0  1431.194      .  .02 18.6  2.581 1803.987  54.422   .5
"AFG" 734 0  1450.203      .  .14 18.6  2.581 1803.987  54.422   .5
"AFG" 735 0  1534.743      .  .62 18.6  2.581 1803.987  54.422   .5
"AGO" 721 0         .      .    . 16.8  2.405 5819.495   23.89   .8
"AGO" 722 0      .213      .    . 16.8  2.405 5819.495   23.89   .8
"AGO" 723 0      .822      .    . 16.8  2.405 5819.495   23.89   .8
"AGO" 724 0     2.617      .    . 16.8  2.405 5819.495   23.89   .8
"AGO" 725 0     8.641      .    . 16.8  2.405 5819.495   23.89   .8
"AGO" 726 0    34.929      .    . 16.8  2.405 5819.495   23.89   .8
"AGO" 727 0    80.751      .    . 16.8  2.405 5819.495   23.89   .8
"AGO" 728 0    151.28      .    . 16.8  2.405 5819.495   23.89   .8
"AGO" 729 0   328.757      .    . 16.8  2.405 5819.495   23.89   .8
"AGO" 730 0   460.624      .    . 16.8  2.405 5819.495   23.89   .8
"AGO" 731 0   534.073      .    . 16.8  2.405 5819.495   23.89   .8
"AGO" 732 0    602.32      .    . 16.8  2.405 5819.495   23.89   .8
"AGO" 733 0   633.081      .    . 16.8  2.405 5819.495   23.89   .8
"AGO" 734 0   678.842      .   .4 16.8  2.405 5819.495   23.89   .8
"AGO" 735 0   810.923      . 1.39 16.8  2.405 5819.495   23.89   .8
"ALB" 721 0         .   .009    .   38 13.188 11803.43 104.871 2.89
"ALB" 722 0     84.44   .539    .   38 13.188 11803.43 104.871 2.89
end
format %tm date

where total_cases_per_million is my dependent variable and it represents the cumulative number of COVID-19 cases by country. Here there is my code with the output I get:

Code:
. quietly tab date, gen(dt)

. gen dtfed1 = dt1*country_system
. gen dtfed2 = dt2*country_system
. gen dtfed3 = dt3*country_system
......
. gen dtfed14 = dt14*country_system
. gen dtfed15 = dt15*country_system

. xtreg total_cases_per_million country_system total_tests_per_thousand dtfed1-dtfed13   
> people_vaccinated health_exp_percap population_density median_age aged_65_older gdp_per
> _capita cardiovasc_death_rate diabetes_prevalence hospital_beds_per_thousand life_expec
> tancy human_development_index, re vce(cluster country)
note: dtfed1 omitted because of collinearity
note: dtfed2 omitted because of collinearity
note: dtfed3 omitted because of collinearity
note: dtfed4 omitted because of collinearity
note: dtfed5 omitted because of collinearity
note: dtfed6 omitted because of collinearity
note: dtfed7 omitted because of collinearity
note: dtfed8 omitted because of collinearity
note: dtfed9 omitted because of collinearity
note: dtfed10 omitted because of collinearity

Random-effects GLS regression                   Number of obs     =        329
Group variable: n_country                       Number of groups  =         96

R-sq:                                           Obs per group:
     within  = 0.6276                                         min =          1
     between = 0.4878                                         avg =        3.4
     overall = 0.4784                                         max =          5

                                                Wald chi2(16)     =     407.34
corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =     0.0000

                                         (Std. Err. adjusted for 96 clusters in country)
----------------------------------------------------------------------------------------
                       |               Robust
total_cases_per_mill~n |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-----------------------+----------------------------------------------------------------
        country_system |  -4533.477   5729.977    -0.79   0.429    -15764.03    6697.072
total_tests_per_thou~d |   3.967967   1.405584     2.82   0.005     1.213073    6.722861
                dtfed1 |          0  (omitted)
                dtfed2 |          0  (omitted)
                dtfed3 |          0  (omitted)
                dtfed4 |          0  (omitted)
                dtfed5 |          0  (omitted)
                dtfed6 |          0  (omitted)
                dtfed7 |          0  (omitted)
                dtfed8 |          0  (omitted)
                dtfed9 |          0  (omitted)
               dtfed10 |          0  (omitted)
               dtfed11 |  -2483.542   1959.533    -1.27   0.205    -6324.157    1357.072
               dtfed12 |   2486.254   2175.846     1.14   0.253    -1778.326    6750.833
               dtfed13 |   1294.719   1555.654     0.83   0.405    -1754.308    4343.745
     people_vaccinated |   832.6324   100.6034     8.28   0.000     635.4533    1029.812
     health_exp_percap |  -59.18679   39.01102    -1.52   0.129     -135.647    17.27341
    population_density |  -5.558635   1.378589    -4.03   0.000    -8.260621   -2.856649
            median_age |   754.4673   1075.997     0.70   0.483    -1354.448    2863.383
         aged_65_older |   321.6327    1199.82     0.27   0.789    -2029.971    2673.236
        gdp_per_capita |   .0457816   .1851921     0.25   0.805    -.3171882    .4087514
 cardiovasc_death_rate |   22.72593   24.80037     0.92   0.359    -25.88189    71.33376
   diabetes_prevalence |   536.9487   926.1302     0.58   0.562    -1278.233    2352.131
hospital_beds_per_th~d |  -1352.854   1303.595    -1.04   0.299    -3907.854    1202.146
       life_expectancy |  -259.1242   731.7597    -0.35   0.723    -1693.347    1175.098
human_development_in~x |   59745.43   49598.66     1.20   0.228    -37466.16      156957
                 _cons |  -29163.35   34444.78    -0.85   0.397    -96673.88    38347.17
-----------------------+----------------------------------------------------------------
               sigma_u |   19960.74
               sigma_e |  6859.7266
                   rho |  .89437211   (fraction of variance due to u_i)
----------------------------------------------------------------------------------------
The idea of these interaction terms is to see whether a given system of government state, in a given month, had a significant effect on the number of COVID-19 cases. I exclude the two last interaction terms in my model to avoid collinearity, however, it seems that I am still getting omitted variables.

Would anyone know how to solve this issue and which are the causes? I looked in previous posts but I could not find solutions that I could apply to this specific situation.
Thanks in advance to whoever is willing to help

Alessio