I have a household dataset in which respondents' data are in a long layout but their children's information are in a wide layout. I want to create a dataset in a long layout for children (only biological children, not considering children-in-law or adopted ones) and then I will use the created children dataset to merge with that of respondents to utilize other information of respondents. I would appreciate if anyone can help me with this issue.
In the survey, there is a section called household members information which contains information of all household members on age, gender, relationship with respondents, marital status, and education. The interview procedure is that respondents are asked to list out all of those information, starting with respondents first and then other household members. Thus, in a data example below, variables b01-b61 are information on respondents and the rest are for other household members. Since respondents are the interviewees so qid is the uniquely identified observation for each respondent.
Thank you.
Code:
clear input long qid byte(b01 b21s b31r) int b41y byte(b51 b61 b02 b22s b32r) int b42y byte(b52 b62 b03 b23s b33r) int b43y byte(b53 b63 b04 b24s b34r) int b44y byte(b54 b64 b05 b25s b35r) int b45y byte(b55 b65) 11 1 2 1 1938 1 6 2 2 4 1970 2 7 3 1 10 1999 1 3 4 1 10 1999 1 3 5 1 10 2001 1 2 13 1 1 1 1951 2 7 2 2 2 1950 2 7 3 1 3 1975 2 7 4 2 5 1979 2 7 5 1 10 2005 1 2 15 1 1 1 1950 2 5 2 2 2 1950 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 1 2 1 1946 2 3 2 1 2 1945 2 5 3 1 3 1971 2 5 4 2 5 1975 2 5 5 1 10 1995 1 4 18 1 2 1 1936 2 2 2 1 2 1931 2 4 3 2 10 1993 1 5 4 2 10 1994 1 4 0 0 0 0 0 0 19 1 2 1 1929 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 110 1 2 1 1931 2 2 2 1 2 1928 2 7 3 1 3 1959 2 7 4 2 5 1964 2 5 5 2 10 1988 1 5 111 1 1 1 1946 2 7 2 2 2 1948 2 5 3 1 3 1977 2 7 4 2 5 1977 2 7 5 1 10 2005 1 0 112 1 1 1 1928 2 6 2 1 3 1977 2 6 3 2 5 1981 2 6 4 2 10 2005 1 2 5 1 10 2006 1 0 113 1 2 1 1932 5 6 2 2 5 1963 2 6 3 1 10 1990 1 5 4 2 10 1993 1 5 0 0 0 0 0 0 114 1 2 1 1930 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 115 1 1 1 1951 2 5 2 2 2 1959 2 5 3 1 10 2008 1 0 0 0 0 0 0 0 0 0 0 0 0 0 119 1 2 1 1945 2 4 2 1 2 1940 2 4 3 2 10 1999 1 3 0 0 0 0 0 0 0 0 0 0 0 0 120 1 1 1 1940 2 4 2 2 2 1945 2 4 3 2 10 1999 1 3 0 0 0 0 0 0 0 0 0 0 0 0 122 1 1 1 1930 2 7 2 2 2 1954 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 123 1 2 1 1950 2 5 2 1 2 1948 2 7 3 2 5 1983 2 7 4 1 3 1988 1 7 5 1 10 2010 1 0 124 1 1 1 1940 2 2 2 2 2 1939 2 2 3 1 10 2000 1 3 0 0 0 0 0 0 0 0 0 0 0 0 125 1 2 1 1942 2 6 2 1 2 1942 2 7 3 1 3 1982 2 7 4 2 5 1983 2 7 5 1 10 2009 1 0 126 1 2 1 1930 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 1 2 1 1942 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128 1 1 1 1933 2 4 2 2 2 1933 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 129 1 2 1 1949 5 6 2 2 4 1985 2 6 3 1 5 1983 2 7 4 2 10 2010 1 0 0 0 0 0 0 0 134 1 2 1 1949 2 4 2 1 2 1943 2 4 3 1 3 1975 2 5 4 2 5 1977 2 5 5 1 10 2005 1 2 136 1 1 1 1936 2 2 2 2 2 1940 2 2 3 1 3 1963 1 4 4 2 4 1967 2 4 5 1 5 1961 2 5 137 1 1 1 1941 5 5 2 1 3 1976 2 6 3 2 5 1977 2 5 4 2 3 1980 2 7 5 1 3 1983 1 6 138 1 2 1 1927 5 2 2 2 4 1969 2 5 3 1 5 1968 2 4 0 0 0 0 0 0 0 0 0 0 0 0 139 1 2 1 1929 5 5 2 1 3 1955 2 5 3 2 5 1957 2 5 4 1 10 1990 1 5 0 0 0 0 0 0 140 1 2 1 1948 2 3 2 1 2 1944 2 4 3 1 3 1978 2 4 0 0 0 0 0 0 0 0 0 0 0 0 141 1 2 1 1924 5 2 2 1 3 1970 2 5 3 2 5 1972 2 5 4 1 10 1998 1 3 5 1 10 2008 1 0 142 1 1 1 1931 2 3 2 2 2 1933 2 3 3 2 4 1959 1 4 0 0 0 0 0 0 0 0 0 0 0 0 146 1 1 1 1941 2 5 2 2 2 1945 2 3 3 1 3 1976 3 5 4 1 3 1978 2 5 5 2 5 1987 2 5 147 1 2 1 1936 2 1 2 1 2 1934 2 3 3 1 3 1957 1 4 0 0 0 0 0 0 0 0 0 0 0 0 148 1 2 1 1951 2 4 2 1 2 1936 2 4 3 1 3 1982 2 5 4 2 5 1982 2 5 5 1 10 2005 1 2 149 1 2 1 1950 2 3 2 1 2 1945 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 1 1 1 1945 2 4 2 2 2 1950 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 151 1 2 1 1938 5 3 2 1 3 1975 2 3 3 2 5 1978 2 4 4 2 10 2007 1 0 5 2 10 2010 1 0 152 1 1 1 1951 2 4 2 2 2 1958 2 4 3 1 3 1986 2 3 4 2 5 1986 2 4 5 1 3 1992 1 3 153 1 2 1 1928 5 2 2 1 3 1955 2 4 3 2 5 1958 2 3 4 1 10 1985 1 5 5 1 10 1990 1 4 154 1 2 1 1947 2 2 2 1 2 1939 2 3 3 1 3 1977 2 4 4 2 5 1989 2 5 5 2 10 2001 1 2 155 1 2 1 1944 5 2 2 1 10 2001 1 2 3 1 10 1994 1 3 0 0 0 0 0 0 0 0 0 0 0 0 156 1 2 1 1930 2 1 2 1 2 1933 2 4 3 1 3 1957 2 4 4 2 5 1956 2 3 5 1 10 1981 2 4 159 1 2 1 1936 5 3 2 1 3 1962 2 4 3 2 5 1966 2 4 4 1 10 1986 1 4 5 2 10 1988 1 6 161 1 2 1 1937 5 5 2 1 4 1968 1 5 3 1 3 1963 2 6 4 2 5 1964 2 5 5 2 10 1989 1 7 162 1 2 1 1948 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 163 1 2 1 1929 2 6 2 1 2 1927 2 7 3 1 3 1956 2 4 4 2 5 1983 2 4 5 1 10 2003 1 0 164 1 2 1 1950 2 6 2 1 2 1949 2 6 3 1 3 1973 2 7 4 2 5 1973 2 7 5 1 3 1979 2 7 167 1 1 1 1945 2 7 2 2 2 1948 2 7 3 2 4 1978 2 9 4 1 5 1983 2 9 5 2 10 2010 1 0 168 1 2 1 1938 2 4 2 1 2 1930 2 4 3 1 3 1973 2 7 4 2 4 1975 2 7 5 1 10 2000 1 3 169 1 1 1 1929 2 7 2 2 2 1931 2 4 3 1 3 1959 2 4 4 2 5 1966 2 3 5 1 10 1992 2 5 171 1 2 1 1930 2 4 2 1 2 1921 2 3 3 1 3 1962 2 5 4 2 5 1965 2 5 5 1 10 1989 1 5 173 1 1 1 1929 2 2 2 2 2 1938 2 3 3 1 3 1970 2 5 4 2 5 1987 2 5 0 0 0 0 0 0 175 1 1 1 1937 2 7 2 2 2 1943 2 7 3 1 3 1980 1 8 0 0 0 0 0 0 0 0 0 0 0 0 176 1 1 1 1944 2 9 2 2 2 1945 2 7 3 1 3 1979 2 8 4 2 10 2000 1 2 0 0 0 0 0 0 177 1 1 1 1938 2 7 2 2 2 1943 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 178 1 2 1 1949 2 3 2 1 2 1946 2 6 3 1 3 1974 2 6 4 2 5 1975 2 6 5 1 10 1995 1 4 180 1 1 1 1946 2 4 2 2 2 1953 2 4 3 1 3 1990 1 5 0 0 0 0 0 0 0 0 0 0 0 0 181 1 2 1 1950 2 3 2 1 2 1950 2 4 3 1 3 1985 1 7 0 0 0 0 0 0 0 0 0 0 0 0 182 1 2 1 1925 5 2 2 1 3 1957 4 4 3 2 4 1962 1 7 4 1 10 1993 1 5 0 0 0 0 0 0 183 1 2 1 1931 5 1 2 2 4 1953 2 4 3 2 4 1949 1 1 4 1 3 1962 2 4 5 2 5 1965 2 5 184 1 2 1 1949 1 1 2 2 7 1931 5 1 3 2 12 1953 2 4 4 1 12 1962 2 4 5 2 12 1965 2 5 186 1 2 1 1935 5 2 2 1 3 1955 2 4 3 2 5 1962 2 5 4 1 10 1986 2 5 5 2 10 1985 2 5 188 1 2 1 1940 5 3 2 1 3 1964 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 190 1 2 1 1945 5 5 2 1 3 1971 2 5 3 2 5 1974 2 4 4 2 10 2001 1 2 5 2 10 2009 1 0 191 1 1 1 1948 2 7 2 2 2 1951 2 7 3 1 3 1984 1 7 0 0 0 0 0 0 0 0 0 0 0 0 192 1 1 1 1939 2 5 2 2 2 1946 2 5 3 1 3 1971 1 7 4 1 3 1977 1 5 0 0 0 0 0 0 193 1 2 1 1927 5 2 2 1 3 1964 2 7 3 2 5 1968 2 7 4 1 10 2003 1 2 5 2 10 1995 1 4 194 1 1 1 1941 2 3 2 2 2 1941 2 2 3 1 10 1986 3 4 4 1 10 2007 1 0 0 0 0 0 0 0 196 1 2 1 1930 5 1 2 2 4 1956 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 197 1 2 1 1951 2 6 2 1 2 1949 2 7 3 1 3 1981 2 7 4 2 5 1985 2 7 5 2 10 2007 1 0 199 1 2 1 1945 2 5 2 1 2 1931 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 331 1 1 1 1946 2 2 2 2 2 1963 2 5 3 2 4 1993 2 4 0 0 0 0 0 0 0 0 0 0 0 0 332 1 2 1 1936 5 2 2 1 3 1968 2 3 3 2 5 1970 2 4 4 1 10 1993 1 5 0 0 0 0 0 0 333 1 2 1 1930 2 1 2 1 2 1932 2 4 3 1 3 1973 2 3 4 2 5 1975 2 4 5 1 10 1997 1 3 336 1 2 1 1950 2 7 2 1 2 1947 2 7 3 1 3 1975 2 7 4 2 5 1979 2 7 5 1 10 2002 1 2 337 1 2 1 1926 5 1 2 1 3 1965 2 3 3 2 5 1970 2 4 4 1 10 1992 1 5 5 1 10 1996 1 3 338 1 2 1 1941 5 3 2 2 4 1967 2 4 3 1 10 2006 1 2 0 0 0 0 0 0 0 0 0 0 0 0 362 1 2 1 1939 2 7 2 1 2 1933 2 7 3 1 3 1963 2 5 4 2 5 1967 2 5 5 2 10 1994 1 1 363 1 1 1 1950 2 4 2 2 2 1952 2 3 3 2 4 1977 2 4 4 1 10 1998 1 3 0 0 0 0 0 0 366 1 1 1 1935 2 7 2 2 2 1940 2 6 3 1 3 1960 2 5 4 2 5 1970 2 4 5 1 10 1992 1 5 367 1 1 1 1948 2 6 2 2 2 1952 2 6 3 2 10 1992 1 5 0 0 0 0 0 0 0 0 0 0 0 0 368 1 1 1 1945 2 7 2 2 2 1950 2 7 3 1 10 2008 1 0 0 0 0 0 0 0 0 0 0 0 0 0 369 1 1 1 1925 2 5 2 2 2 1930 2 4 3 1 3 1949 2 6 4 2 5 1949 2 6 5 2 10 1987 1 7 382 1 2 1 1929 2 2 2 1 2 1929 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 383 1 1 1 1929 2 3 2 2 2 1939 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 384 1 2 1 1947 2 3 2 1 2 1940 2 4 3 1 3 1975 2 7 4 2 5 1982 2 4 5 1 10 2006 1 0 385 1 1 1 1950 2 4 2 2 2 1951 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 387 1 2 1 1938 2 1 2 1 2 1937 2 5 3 1 3 1977 2 4 4 2 5 1980 2 7 5 2 10 2006 1 0 389 1 1 1 1939 2 3 2 2 2 1947 2 4 3 1 3 1975 2 7 4 2 5 1982 2 4 5 1 10 2006 1 0 461 1 1 1 1927 2 1 2 2 2 1931 2 1 3 1 10 1979 2 7 4 2 10 1992 1 5 0 0 0 0 0 0 462 1 2 1 1932 2 1 2 1 2 1927 2 1 3 1 10 1979 2 7 4 2 10 1992 1 5 0 0 0 0 0 0 463 1 1 1 1930 2 6 2 2 2 1947 2 7 3 1 3 1979 1 8 0 0 0 0 0 0 0 0 0 0 0 0 464 1 2 1 1945 2 7 2 1 2 1940 2 7 3 1 3 1973 2 7 4 2 5 1977 2 7 5 2 10 2006 1 0 465 1 2 1 1936 5 3 2 1 3 1966 2 7 3 2 5 1974 2 7 4 2 10 2003 1 2 5 2 10 2011 1 0 466 1 1 1 1950 2 9 2 2 2 1960 2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 469 1 2 1 1948 2 4 2 1 2 1947 2 7 3 1 3 1981 1 7 4 2 10 1984 1 5 5 2 10 2001 1 2 491 1 1 1 1949 2 5 2 2 2 1961 2 6 3 2 4 1983 2 6 4 2 4 1991 2 5 5 2 10 2011 1 0 493 1 1 1 1932 2 5 2 2 2 1935 2 4 3 2 4 1958 5 7 0 0 0 0 0 0 0 0 0 0 0 0 494 1 2 1 1950 5 3 2 1 3 1982 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 496 1 1 1 1930 2 6 2 2 2 1944 2 5 3 1 3 1973 2 8 4 2 5 1977 2 7 5 2 10 2001 1 2 497 1 1 1 1940 2 7 2 2 2 1950 2 3 3 2 4 1983 1 6 0 0 0 0 0 0 0 0 0 0 0 0 end label values b21s LABEL_B21 label def LABEL_B21 1 "Male", modify label def LABEL_B21 2 "Female", modify label values b31r LABEL_B31R label def LABEL_B31R 1 "Respondent", modify label values b51 LABEL_B51 label def LABEL_B51 1 "Single", modify label def LABEL_B51 2 "Married", modify label def LABEL_B51 3 "Divorced", modify label def LABEL_B51 5 "Widow", modify label values b61 LABEL_B61 label def LABEL_B61 1 "No scholing", modify label def LABEL_B61 2 "Incomplete primary school", modify label def LABEL_B61 3 "Primary school", modify label def LABEL_B61 4 "Lower secondary school", modify label def LABEL_B61 5 "Upper secondary school", modify label def LABEL_B61 6 "Prof secondary education", modify label def LABEL_B61 7 "Junior college/University", modify label def LABEL_B61 9 "Doctor", modify label values b22s LABEL_B22 label def LABEL_B22 1 "Male", modify label def LABEL_B22 2 "Female", modify label values b32r LABEL_B32R label def LABEL_B32R 2 "Spouse", modify label def LABEL_B32R 3 "Son", modify label def LABEL_B32R 4 "Daughter", modify label def LABEL_B32R 5 "Son/daughter in law", modify label def LABEL_B32R 7 "Parent", modify label def LABEL_B32R 10 "Grand children", modify label values b52 LABEL_B52 label def LABEL_B52 1 "Single", modify label def LABEL_B52 2 "Married", modify label def LABEL_B52 4 "Separated", modify label def LABEL_B52 5 "Widow", modify label values b62 LABEL_B62 label def LABEL_B62 1 "No scholing", modify label def LABEL_B62 2 "Incomplete primary school", modify label def LABEL_B62 3 "Primary school", modify label def LABEL_B62 4 "Lower secondary school", modify label def LABEL_B62 5 "Upper secondary school", modify label def LABEL_B62 6 "Prof secondary education", modify label def LABEL_B62 7 "Junior college/University", modify label values b23s LABEL_B23 label def LABEL_B23 1 "Male", modify label def LABEL_B23 2 "Female", modify label values b33r LABEL_B33R label def LABEL_B33R 3 "Son", modify label def LABEL_B33R 4 "Daughter", modify label def LABEL_B33R 5 "Son/daughter in law", modify label def LABEL_B33R 10 "Grand children", modify label def LABEL_B33R 12 "Other relatives", modify label values b53 LABEL_B53 label def LABEL_B53 1 "Single", modify label def LABEL_B53 2 "Married", modify label def LABEL_B53 3 "Divorced", modify label def LABEL_B53 5 "Widow", modify label values b63 LABEL_B63 label def LABEL_B63 0 "Still young", modify label def LABEL_B63 1 "No scholing", modify label def LABEL_B63 2 "Incomplete primary school", modify label def LABEL_B63 3 "Primary school", modify label def LABEL_B63 4 "Lower secondary school", modify label def LABEL_B63 5 "Upper secondary school", modify label def LABEL_B63 6 "Prof secondary education", modify label def LABEL_B63 7 "Junior college/University", modify label def LABEL_B63 8 "Master", modify label def LABEL_B63 9 "Doctor", modify label values b24s LABEL_B24 label def LABEL_B24 1 "Male", modify label def LABEL_B24 2 "Female", modify label values b34r LABEL_B34R label def LABEL_B34R 3 "Son", modify label def LABEL_B34R 4 "Daughter", modify label def LABEL_B34R 5 "Son/daughter in law", modify label def LABEL_B34R 10 "Grand children", modify label def LABEL_B34R 12 "Other relatives", modify label values b54 LABEL_B54 label def LABEL_B54 1 "Single", modify label def LABEL_B54 2 "Married", modify label values b64 LABEL_B64 label def LABEL_B64 0 "Still young", modify label def LABEL_B64 2 "Incomplete primary school", modify label def LABEL_B64 3 "Primary school", modify label def LABEL_B64 4 "Lower secondary school", modify label def LABEL_B64 5 "Upper secondary school", modify label def LABEL_B64 6 "Prof secondary education", modify label def LABEL_B64 7 "Junior college/University", modify label def LABEL_B64 9 "Doctor", modify label values b25s LABEL_B25 label def LABEL_B25 1 "Male", modify label def LABEL_B25 2 "Female", modify label values b35r LABEL_B35R label def LABEL_B35R 3 "Son", modify label def LABEL_B35R 5 "Son/daughter in law", modify label def LABEL_B35R 10 "Grand children", modify label def LABEL_B35R 12 "Other relatives", modify label values b55 LABEL_B55 label def LABEL_B55 1 "Single", modify label def LABEL_B55 2 "Married", modify label values b65 LABEL_B65 label def LABEL_B65 0 "Still young", modify label def LABEL_B65 1 "No scholing", modify label def LABEL_B65 2 "Incomplete primary school", modify label def LABEL_B65 3 "Primary school", modify label def LABEL_B65 4 "Lower secondary school", modify label def LABEL_B65 5 "Upper secondary school", modify label def LABEL_B65 6 "Prof secondary education", modify label def LABEL_B65 7 "Junior college/University", modify
0 Response to How to construct children data based on their parents' data?
Post a Comment