I tried to run a logit model with an interaction effect which unfortunately does not work due to separation:
Code:
. logit care_benefits c.health_lim##i.onecareperson_3 if valid==1 & onecarepersononly==1 note: 2.onecareperson_3 != 0 predicts failure perfectly 2.onecareperson_3 dropped and 65 obs not used note: 3.onecareperson_3#c.health_lim != 0 predicts failure perfectly 3.onecareperson_3#c.health_lim dropped and 32 obs not used note: 2.onecareperson_3#c.health_lim omitted because of collinearity Iteration 0: log likelihood = -47.883416 Iteration 1: log likelihood = -39.596133 Iteration 2: log likelihood = -35.881327 Iteration 3: log likelihood = -35.798874 Iteration 4: log likelihood = -35.798488 Iteration 5: log likelihood = -35.798488 Logistic regression Number of obs = 320 LR chi2(2) = 24.17 Prob > chi2 = 0.0000 Log likelihood = -35.798488 Pseudo R2 = 0.2524 ---------------------------------------------------------------------------------------------- care_benefits | Coef. Std. Err. z P>|z| [95% Conf. Interval] -----------------------------+---------------------------------------------------------------- health_lim | .3637094 .085982 4.23 0.000 .1951877 .532231 | onecareperson_3 | wider family | 0 (empty) not family | -.3931463 1.182315 -0.33 0.739 -2.710441 1.924148 | onecareperson_3#c.health_lim | wider family | 0 (empty) not family | 0 (omitted) | _cons | -4.360444 .6238969 -6.99 0.000 -5.583259 -3.137628 ----------------------------------------------------------------------------------------------
Code:
. firthlogit care_benefits c.health_lim##i.onecareperson_3 if valid==1 & onecarepersononly==1 initial: penalized log likelihood = -45.352147 rescale: penalized log likelihood = -45.352147 Iteration 0: penalized log likelihood = -45.352147 Iteration 1: penalized log likelihood = -32.617258 Iteration 2: penalized log likelihood = -31.545871 Iteration 3: penalized log likelihood = -31.462159 Iteration 4: penalized log likelihood = -31.4621 Iteration 5: penalized log likelihood = -31.4621 Number of obs = 417 Wald chi2(5) = 27.73 Penalized log likelihood = -31.4621 Prob > chi2 = 0.0000 ---------------------------------------------------------------------------------------------- care_benefits | Coef. Std. Err. z P>|z| [95% Conf. Interval] -----------------------------+---------------------------------------------------------------- health_lim | .3502754 .0817553 4.28 0.000 .190038 .5105129 | onecareperson_3 | wider family | -.6839636 1.635612 -0.42 0.676 -3.889704 2.521777 not family | -.4077488 1.045765 -0.39 0.697 -2.457411 1.641913 | onecareperson_3#c.health_lim | wider family | -.0106092 .3302318 -0.03 0.974 -.6578516 .6366332 not family | -.0372747 .3046006 -0.12 0.903 -.634281 .5597315 | _cons | -4.206488 .5869453 -7.17 0.000 -5.356879 -3.056096 ----------------------------------------------------------------------------------------------
Code:
. margins, dydx(*) expression(invlogit(predict(xb))) Average marginal effects Number of obs = 417 Model VCE : OIM Expression : invlogit(predict(xb)) dy/dx w.r.t. : health_lim 2.onecareperson_3 3.onecareperson_3 --------------------------------------------------------------------------------- | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] ----------------+---------------------------------------------------------------- health_lim | .0091291 .002512 3.63 0.000 .0042057 .0140525 | onecareperson_3 | wider family | -.0174202 .0227347 -0.77 0.444 -.0619794 .0271389 not family | -.014628 .0252153 -0.58 0.562 -.0640492 .0347931 --------------------------------------------------------------------------------- Note: dy/dx for factor levels is the discrete change from the base level.
Thanks for any help!
0 Response to Firthlogit, marginal effects and interactions
Post a Comment