Dear all,
maybe these questions are a bit silly but i am new to sem and gsem and want to use it to test a model. For brevity I display the estimated model as is below. I want to model how performance, aspirations and social origin (income) influence school choice (a binary variable). For references see https://www.stata.com/manuals/sem.pdf


1. Aspirations is a latent construct generated from four ordinal variables with three levels each. I wonder how Stata generates this (continuous?) construct from the indicators. Is it possible to do this "manually" in Stata to evaluate the quality of this construct and how well this works? Like the reliability or something related. Or in other words, how can I demonstrate that it is possible and fine to generate this construct from the 4 variables?
2. Performance is another latent construct. What I understood from the manual is that the paths to school_choice are basically a logistic regression but why is performance constrained to 1 here? The manual explains this but not really how this affects interpretation (page 61). So the logit effect of performance is 1 and all other coefficients are relatively scaled to it? Can I say that aspirations are thus stronger / more important?

Code:
. gsem (aspirations -> idealabschluss, family(ordinal) link(logit)) (aspirations -> idealabsch
> luss_eltern, family(ordinal) link(logit)) (aspirations -> realabschluss, family(ordinal) lin
> k(logit)) (aspirations -> realabschluss_eltern, family(ordinal) link(logit)) (aspirations ->
>  gym5, family(binomial) link(logit)) (logeinkommen -> aspirations, ) (logeinkommen -> gym5,
> family(binomial) link(logit)) (logeinkommen -> performance, ) (performance -> aspirations, )
>  (performance -> gym5, family(binomial) link(logit)) (performance -> mathe3, ) (performance
> -> mathe4, ) (performance -> deutsch3, ) (performance -> deutsch4, ) (performance -> lehrerb
> ewertung, ) if wave ==6, difficult latent(aspirations performance ) nocapslatent

Fitting fixed-effects model:

Iteration 0:   log likelihood = -38046.866  
Iteration 1:   log likelihood = -38045.233  
Iteration 2:   log likelihood = -38045.233  

Refining starting values:

Grid node 0:   log likelihood = -34637.233

Fitting full model:

Iteration 0:   log likelihood = -34637.233  (not concave)
Iteration 1:   log likelihood = -30344.857  (not concave)
Iteration 2:   log likelihood = -29599.725  (not concave)
Iteration 3:   log likelihood = -29224.302  (not concave)
Iteration 4:   log likelihood = -29197.838  (not concave)
Iteration 5:   log likelihood = -29168.182  (not concave)
Iteration 6:   log likelihood = -29093.018  (not concave)
Iteration 7:   log likelihood = -29073.603  (not concave)
Iteration 8:   log likelihood = -29062.762  (not concave)
Iteration 9:   log likelihood = -29018.634  (not concave)
Iteration 10:  log likelihood = -28997.441  (not concave)
Iteration 11:  log likelihood = -28972.917  (not concave)
Iteration 12:  log likelihood = -28938.079  (not concave)
Iteration 13:  log likelihood = -28920.101  (not concave)
Iteration 14:  log likelihood = -28911.102  (not concave)
Iteration 15:  log likelihood = -28905.134  (not concave)
Iteration 16:  log likelihood = -28892.625  (not concave)
Iteration 17:  log likelihood = -28866.879  (not concave)
Iteration 18:  log likelihood = -28854.751  (not concave)
Iteration 19:  log likelihood = -28846.679  (not concave)
Iteration 20:  log likelihood =  -28836.32  (not concave)
Iteration 21:  log likelihood = -28831.094  (not concave)
Iteration 22:  log likelihood = -28826.781  (not concave)
Iteration 23:  log likelihood = -28820.993  (not concave)
Iteration 24:  log likelihood = -28817.148  (not concave)
Iteration 25:  log likelihood = -28815.084  (not concave)
Iteration 26:  log likelihood = -28813.244  (not concave)
Iteration 27:  log likelihood = -28813.061  (not concave)
Iteration 28:  log likelihood = -28813.014  
Iteration 29:  log likelihood = -28813.224  
Iteration 30:  log likelihood = -28813.076  
Iteration 31:  log likelihood = -28813.071  
Iteration 32:  log likelihood = -28813.072  
Iteration 33:  log likelihood = -28813.073  
Iteration 34:  log likelihood = -28813.072  
Iteration 35:  log likelihood = -28813.073  

Generalized structural equation model           Number of obs     =      6,401

Response       : idealabschluss                 Number of obs     =      5,351
Family         : ordinal
Link           : logit

Response       : idealabschluss_elt~n           Number of obs     =      4,651
Family         : ordinal
Link           : logit

Response       : realabschluss                  Number of obs     =      5,128
Family         : ordinal
Link           : logit

Response       : realabschluss_eltern           Number of obs     =      4,638
Family         : ordinal
Link           : logit

Response       : gym5                           Number of obs     =      3,369
Family         : Bernoulli
Link           : logit

Response       : mathe3                         Number of obs     =      4,246
Family         : Gaussian
Link           : identity

Response       : mathe4                         Number of obs     =      4,410
Family         : Gaussian
Link           : identity

Response       : deutsch3                       Number of obs     =      4,237
Family         : Gaussian
Link           : identity

Response       : deutsch4                       Number of obs     =      4,407
Family         : Gaussian
Link           : identity

Response       : lehrerbewertung                Number of obs     =      3,583
Family         : Gaussian
Link           : identity

Log likelihood = -28813.073

 ( 1)  [idealabschluss]aspirations = 1
 ( 2)  [gym5]performance = 1
----------------------------------------------------------------------------------------
                       |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-----------------------+----------------------------------------------------------------
idealabschluss         |
           aspirations |          1  (constrained)
-----------------------+----------------------------------------------------------------
idealabschluss_eltern  |
           aspirations |   1.042155   .0725223    14.37   0.000     .9000138    1.184296
-----------------------+----------------------------------------------------------------
realabschluss          |
           aspirations |   .9120171   .0482997    18.88   0.000     .8173515    1.006683
-----------------------+----------------------------------------------------------------
realabschluss_eltern   |
           aspirations |   2.750176   .4215265     6.52   0.000     1.923999    3.576353
-----------------------+----------------------------------------------------------------
gym5                   |
          logeinkommen |  -.0495102   .1663453    -0.30   0.766    -.3755411    .2765206
           aspirations |    1.10003   .1044508    10.53   0.000     .8953105     1.30475
           performance |          1  (constrained)
                 _cons |  -22.37072   1.725779   -12.96   0.000    -25.75319   -18.98826
-----------------------+----------------------------------------------------------------
mathe3                 |
           performance |   .8408953   .1393619     6.03   0.000     .5677509     1.11404
                 _cons |   .8236341   .1490849     5.52   0.000     .5314331    1.115835
-----------------------+----------------------------------------------------------------
mathe4                 |
           performance |   .8815648   .1460884     6.03   0.000     .5952368    1.167893
                 _cons |   .5626762   .1558728     3.61   0.000      .257171    .8681814
-----------------------+----------------------------------------------------------------
deutsch3               |
           performance |   .8874467   .1470255     6.04   0.000      .599282    1.175611
                 _cons |   .5307909   .1544092     3.44   0.001     .2281544    .8334275
-----------------------+----------------------------------------------------------------
deutsch4               |
           performance |   .9502487   .1572729     6.04   0.000     .6419996    1.258498
                 _cons |   .2418313   .1644166     1.47   0.141    -.0804194     .564082
-----------------------+----------------------------------------------------------------
lehrerbewertung        |
           performance |   .9363136   .1552998     6.03   0.000     .6319316    1.240696
                 _cons |  -.0363143   .1649169    -0.22   0.826    -.3595455    .2869169
-----------------------+----------------------------------------------------------------
aspirations            |
           performance |    2.88466   .5057989     5.70   0.000     1.893312    3.876008
          logeinkommen |   .8647389   .1046278     8.26   0.000     .6596721    1.069806
-----------------------+----------------------------------------------------------------
performance            |
          logeinkommen |   .4601273   .0758535     6.07   0.000     .3114572    .6087974
-----------------------+----------------------------------------------------------------
/idealabschluss        |
                  cut1 |    15.3001    1.13888                      13.06793    17.53226
-----------------------+----------------------------------------------------------------
/idealabschluss_eltern |
                  cut1 |   16.21353   1.184927                      13.89112    18.53595
-----------------------+----------------------------------------------------------------
/realabschluss         |
                  cut1 |   15.09398   .9326309                      13.26606    16.92191
-----------------------+----------------------------------------------------------------
/realabschluss_eltern  |
                  cut1 |   45.71751   6.376759                       33.2193    58.21573
-----------------------+----------------------------------------------------------------
     var(e.aspirations)|   3.187809   .3478379                      2.574029    3.947946
     var(e.performance)|   .4555128   .1509999                      .2378659    .8723064
-----------------------+----------------------------------------------------------------
          var(e.mathe3)|   .2587328   .0072316                      .2449404    .2733018
          var(e.mathe4)|   .2667887   .0074515                      .2525766    .2818004
        var(e.deutsch3)|   .2163404   .0064982                      .2039717     .229459
        var(e.deutsch4)|     .20087   .0064828                      .1885575    .2139864
 var(e.lehrerbewertung)|   .2471626   .0081774                      .2316438     .263721
----------------------------------------------------------------------------------------