maybe these questions are a bit silly but i am new to sem and gsem and want to use it to test a model. For brevity I display the estimated model as is below. I want to model how performance, aspirations and social origin (income) influence school choice (a binary variable). For references see https://www.stata.com/manuals/sem.pdf
1. Aspirations is a latent construct generated from four ordinal variables with three levels each. I wonder how Stata generates this (continuous?) construct from the indicators. Is it possible to do this "manually" in Stata to evaluate the quality of this construct and how well this works? Like the reliability or something related. Or in other words, how can I demonstrate that it is possible and fine to generate this construct from the 4 variables?
2. Performance is another latent construct. What I understood from the manual is that the paths to school_choice are basically a logistic regression but why is performance constrained to 1 here? The manual explains this but not really how this affects interpretation (page 61). So the logit effect of performance is 1 and all other coefficients are relatively scaled to it? Can I say that aspirations are thus stronger / more important?
Code:
. gsem (aspirations -> idealabschluss, family(ordinal) link(logit)) (aspirations -> idealabsch > luss_eltern, family(ordinal) link(logit)) (aspirations -> realabschluss, family(ordinal) lin > k(logit)) (aspirations -> realabschluss_eltern, family(ordinal) link(logit)) (aspirations -> > gym5, family(binomial) link(logit)) (logeinkommen -> aspirations, ) (logeinkommen -> gym5, > family(binomial) link(logit)) (logeinkommen -> performance, ) (performance -> aspirations, ) > (performance -> gym5, family(binomial) link(logit)) (performance -> mathe3, ) (performance > -> mathe4, ) (performance -> deutsch3, ) (performance -> deutsch4, ) (performance -> lehrerb > ewertung, ) if wave ==6, difficult latent(aspirations performance ) nocapslatent Fitting fixed-effects model: Iteration 0: log likelihood = -38046.866 Iteration 1: log likelihood = -38045.233 Iteration 2: log likelihood = -38045.233 Refining starting values: Grid node 0: log likelihood = -34637.233 Fitting full model: Iteration 0: log likelihood = -34637.233 (not concave) Iteration 1: log likelihood = -30344.857 (not concave) Iteration 2: log likelihood = -29599.725 (not concave) Iteration 3: log likelihood = -29224.302 (not concave) Iteration 4: log likelihood = -29197.838 (not concave) Iteration 5: log likelihood = -29168.182 (not concave) Iteration 6: log likelihood = -29093.018 (not concave) Iteration 7: log likelihood = -29073.603 (not concave) Iteration 8: log likelihood = -29062.762 (not concave) Iteration 9: log likelihood = -29018.634 (not concave) Iteration 10: log likelihood = -28997.441 (not concave) Iteration 11: log likelihood = -28972.917 (not concave) Iteration 12: log likelihood = -28938.079 (not concave) Iteration 13: log likelihood = -28920.101 (not concave) Iteration 14: log likelihood = -28911.102 (not concave) Iteration 15: log likelihood = -28905.134 (not concave) Iteration 16: log likelihood = -28892.625 (not concave) Iteration 17: log likelihood = -28866.879 (not concave) Iteration 18: log likelihood = -28854.751 (not concave) Iteration 19: log likelihood = -28846.679 (not concave) Iteration 20: log likelihood = -28836.32 (not concave) Iteration 21: log likelihood = -28831.094 (not concave) Iteration 22: log likelihood = -28826.781 (not concave) Iteration 23: log likelihood = -28820.993 (not concave) Iteration 24: log likelihood = -28817.148 (not concave) Iteration 25: log likelihood = -28815.084 (not concave) Iteration 26: log likelihood = -28813.244 (not concave) Iteration 27: log likelihood = -28813.061 (not concave) Iteration 28: log likelihood = -28813.014 Iteration 29: log likelihood = -28813.224 Iteration 30: log likelihood = -28813.076 Iteration 31: log likelihood = -28813.071 Iteration 32: log likelihood = -28813.072 Iteration 33: log likelihood = -28813.073 Iteration 34: log likelihood = -28813.072 Iteration 35: log likelihood = -28813.073 Generalized structural equation model Number of obs = 6,401 Response : idealabschluss Number of obs = 5,351 Family : ordinal Link : logit Response : idealabschluss_elt~n Number of obs = 4,651 Family : ordinal Link : logit Response : realabschluss Number of obs = 5,128 Family : ordinal Link : logit Response : realabschluss_eltern Number of obs = 4,638 Family : ordinal Link : logit Response : gym5 Number of obs = 3,369 Family : Bernoulli Link : logit Response : mathe3 Number of obs = 4,246 Family : Gaussian Link : identity Response : mathe4 Number of obs = 4,410 Family : Gaussian Link : identity Response : deutsch3 Number of obs = 4,237 Family : Gaussian Link : identity Response : deutsch4 Number of obs = 4,407 Family : Gaussian Link : identity Response : lehrerbewertung Number of obs = 3,583 Family : Gaussian Link : identity Log likelihood = -28813.073 ( 1) [idealabschluss]aspirations = 1 ( 2) [gym5]performance = 1 ---------------------------------------------------------------------------------------- | Coef. Std. Err. z P>|z| [95% Conf. Interval] -----------------------+---------------------------------------------------------------- idealabschluss | aspirations | 1 (constrained) -----------------------+---------------------------------------------------------------- idealabschluss_eltern | aspirations | 1.042155 .0725223 14.37 0.000 .9000138 1.184296 -----------------------+---------------------------------------------------------------- realabschluss | aspirations | .9120171 .0482997 18.88 0.000 .8173515 1.006683 -----------------------+---------------------------------------------------------------- realabschluss_eltern | aspirations | 2.750176 .4215265 6.52 0.000 1.923999 3.576353 -----------------------+---------------------------------------------------------------- gym5 | logeinkommen | -.0495102 .1663453 -0.30 0.766 -.3755411 .2765206 aspirations | 1.10003 .1044508 10.53 0.000 .8953105 1.30475 performance | 1 (constrained) _cons | -22.37072 1.725779 -12.96 0.000 -25.75319 -18.98826 -----------------------+---------------------------------------------------------------- mathe3 | performance | .8408953 .1393619 6.03 0.000 .5677509 1.11404 _cons | .8236341 .1490849 5.52 0.000 .5314331 1.115835 -----------------------+---------------------------------------------------------------- mathe4 | performance | .8815648 .1460884 6.03 0.000 .5952368 1.167893 _cons | .5626762 .1558728 3.61 0.000 .257171 .8681814 -----------------------+---------------------------------------------------------------- deutsch3 | performance | .8874467 .1470255 6.04 0.000 .599282 1.175611 _cons | .5307909 .1544092 3.44 0.001 .2281544 .8334275 -----------------------+---------------------------------------------------------------- deutsch4 | performance | .9502487 .1572729 6.04 0.000 .6419996 1.258498 _cons | .2418313 .1644166 1.47 0.141 -.0804194 .564082 -----------------------+---------------------------------------------------------------- lehrerbewertung | performance | .9363136 .1552998 6.03 0.000 .6319316 1.240696 _cons | -.0363143 .1649169 -0.22 0.826 -.3595455 .2869169 -----------------------+---------------------------------------------------------------- aspirations | performance | 2.88466 .5057989 5.70 0.000 1.893312 3.876008 logeinkommen | .8647389 .1046278 8.26 0.000 .6596721 1.069806 -----------------------+---------------------------------------------------------------- performance | logeinkommen | .4601273 .0758535 6.07 0.000 .3114572 .6087974 -----------------------+---------------------------------------------------------------- /idealabschluss | cut1 | 15.3001 1.13888 13.06793 17.53226 -----------------------+---------------------------------------------------------------- /idealabschluss_eltern | cut1 | 16.21353 1.184927 13.89112 18.53595 -----------------------+---------------------------------------------------------------- /realabschluss | cut1 | 15.09398 .9326309 13.26606 16.92191 -----------------------+---------------------------------------------------------------- /realabschluss_eltern | cut1 | 45.71751 6.376759 33.2193 58.21573 -----------------------+---------------------------------------------------------------- var(e.aspirations)| 3.187809 .3478379 2.574029 3.947946 var(e.performance)| .4555128 .1509999 .2378659 .8723064 -----------------------+---------------------------------------------------------------- var(e.mathe3)| .2587328 .0072316 .2449404 .2733018 var(e.mathe4)| .2667887 .0074515 .2525766 .2818004 var(e.deutsch3)| .2163404 .0064982 .2039717 .229459 var(e.deutsch4)| .20087 .0064828 .1885575 .2139864 var(e.lehrerbewertung)| .2471626 .0081774 .2316438 .263721 ----------------------------------------------------------------------------------------
0 Response to Understanding gsem
Post a Comment