I have household expenditure datasets and I am using Quadratic AIDS model to analyze it. My first step is calculating price index for each commodity groups. To do this, I have calculated unit values and budget shares of each expenditure items. Now, I need to construct Stone Price Index using weighted geometric mean method. I have to weight unit values with budget shares but I could not find a proper way to do it. May I ask the codes for this calculation?
Thank you very much in advance.
This is the small sample of my dataset. The variables starting with "l" are log unit values of the items and the variables ending with "w" are budget shares of the items, and clave represents households.)
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input long clave float(retireinsw otinsurance safedepositw savbanksmcw creditcchargew ordertransferw l_retireinsP l_otinsuranceP l_safedepositP l_savbanksmcP l_creditcchargeP l_ordertransferP) 1000011 0 0 0 0 0 0 . . . . . . 1000031 0 0 0 0 0 0 . . . . . . 1000051 0 0 0 0 0 0 . . . . . . 1000061 0 0 0 0 0 0 . . . . . . 1000091 0 0 0 0 0 0 . . . . . . 1000111 0 0 0 0 0 0 . . . . . . 1000161 0 0 0 0 0 0 . . . . . . 1000181 0 0 0 0 0 0 . . . . . . 1000231 0 0 0 0 0 0 . . . . . . 1000261 0 0 0 0 0 0 . . . . . . 1000281 0 0 0 0 0 0 . . . . . . 1000301 0 0 0 0 0 0 . . . . . . 1000321 0 0 0 0 0 0 . . . . . . 1000361 0 0 0 0 0 0 . . . . . . 1000411 0 0 0 0 0 0 . . . . . . 1000421 0 0 0 0 0 0 . . . . . . 1000431 0 0 0 0 0 0 . . . . . . 1000441 0 0 0 0 0 0 . . . . . . 1000451 0 0 0 0 0 0 . . . . . . 1000461 0 0 0 0 0 0 . . . . . . 1000481 0 0 0 0 0 0 . . . . . . 1000491 0 0 0 0 0 0 . . . . . . 1000501 0 0 0 0 0 0 . . . . . . 1000511 0 0 0 0 0 0 . . . . . . 1000521 0 0 0 0 0 0 . . . . . . 1000541 0 0 0 0 0 0 . . . . . . 1000561 0 0 0 0 0 0 . . . . . . 1000571 0 0 0 0 0 0 . . . . . . 1000601 0 0 0 0 0 0 . . . . . . 1000631 0 0 0 0 0 0 . . . . . . 1000641 0 0 0 0 0 0 . . . . . . 1000651 0 0 0 0 0 0 . . . . . . 1000671 0 0 0 0 0 0 . . . . . . 1000681 0 0 0 0 0 0 . . . . . . 1000691 0 0 0 0 0 0 . . . . . . 1000701 0 0 0 0 0 0 . . . . . . 1000711 0 0 0 0 0 0 . . . . . . 1000731 0 0 0 0 0 0 . . . . . . 1000751 0 0 0 0 0 0 . . . . . . 1000761 0 0 0 0 0 0 . . . . . . 1000771 0 .00009854772 0 0 0 0 . 1.1755192 . . . . 1000791 0 0 0 0 0 0 . . . . . . 1000801 0 0 0 0 0 0 . . . . . . 1000821 0 0 0 0 0 0 . . . . . . 1000831 0 0 0 0 0 0 . . . . . . 1000832 0 0 0 0 0 0 . . . . . . 1000851 0 0 0 0 0 0 . . . . . . 1000861 0 0 0 0 0 0 . . . . . . 1000931 0 0 0 0 0 0 . . . . . . 1000941 0 0 0 0 0 0 . . . . . . 1000961 0 0 0 0 0 0 . . . . . . 1001051 0 0 0 0 0 0 . . . . . . 1001061 0 0 0 0 0 0 . . . . . . 1001111 0 0 0 0 0 0 . . . . . . 1001121 0 0 0 .0005988227 0 0 . . . 1.7917395 . . 1001131 0 0 0 0 0 0 . . . . . . 1001141 0 0 0 0 0 0 . . . . . . 1001151 0 0 0 0 0 0 . . . . . . 1001161 0 0 0 0 0 0 . . . . . . 1001171 0 0 0 0 0 0 . . . . . . 1001181 0 0 0 0 0 0 . . . . . . 1001231 0 0 0 0 0 0 . . . . . . 1001261 0 0 0 .001496486 0 0 . . . 2.1972246 . . 1001281 0 0 0 0 0 0 . . . . . . 1001291 0 0 0 0 0 0 . . . . . . 1001301 0 0 0 0 0 0 . . . . . . 1001321 0 0 0 0 0 0 . . . . . . 1001351 0 0 0 0 0 0 . . . . . . 1001361 0 0 0 0 0 0 . . . . . . 1001381 0 0 0 0 0 0 . . . . . . 1001391 0 0 0 0 0 0 . . . . . . 1001431 0 0 0 0 0 0 . . . . . . 1001441 0 0 0 0 0 0 . . . . . . 1001451 0 0 0 0 0 0 . . . . . . 1001471 0 0 0 0 .0044313557 0 . . . . 2.0794415 . 1001501 0 0 0 0 0 0 . . . . . . 1001511 0 0 0 0 0 0 . . . . . . 1001521 0 0 0 0 0 0 . . . . . . 1001531 0 0 0 0 0 0 . . . . . . 1001571 0 0 0 .0009541479 0 0 . . . 2.70803 . . 1001581 0 0 0 .0008366265 0 0 . . . 1.7917395 . . 1001591 0 0 0 0 .013871377 0 . . . . 5.010615 . 1001601 0 0 0 0 0 0 . . . . . . 1001611 0 0 0 0 0 0 . . . . . . 1001621 0 0 0 .003841384 0 0 . . . 3.73765 . . 1001631 0 0 0 0 0 0 . . . . . . 1001641 0 0 0 0 0 0 . . . . . . 1001642 0 0 0 0 0 0 . . . . . . 1001651 0 0 0 0 0 0 . . . . . . 1001671 0 0 0 0 0 0 . . . . . . 1001681 0 0 0 0 0 0 . . . . . . 1001711 0 0 0 0 0 0 . . . . . . 1001721 0 0 0 0 0 0 . . . . . . 1001731 0 0 0 0 0 0 . . . . . . 1001761 0 0 0 .009845003 .010632602 0 . . . 5.010615 3.988984 . 1001771 0 0 0 0 0 0 . . . . . . 1001841 0 0 0 0 0 0 . . . . . . 1001871 0 0 0 0 0 0 . . . . . . 1001891 0 0 0 0 0 0 . . . . . . 1001901 0 0 0 0 0 0 . . . . . . end
0 Response to Weighted Geometric Mean-Cross-Sectional Dataset
Post a Comment