Dear all, I would like to know your opinion on the following issue I am encountering:

I am running a model with the Heckman correction, and then asking for the predicted probabilities. What is not clear is why I obtain a lot of predicted probabilities with negative values. This does not happen when I run the same model without Heckman correction (but using the -logit- command).

Below my data and the results I obtain.

Thanks a lot in advance, best, G.P.

Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input byte(inc20 nasses3 sg11 tit3 cletad) int anno float shagreg
. 1 1 2 6 2017  3.232878
. 1 1 1 3 2018  8.721139
. 1 1 1 6 2016  3.981817
0 1 1 1 4 2018 1.3068345
. 1 1 3 5 2015  7.125418
. 1 1 2 6 2018  4.281139
. 1 2 2 6 2015 2.3719475
1 3 1 1 5 2017 2.1255476
0 1 1 2 3 2016  3.482502
. 1 1 2 6 2014  1.622628
1 1 2 2 5 2018  5.693385
0 1 1 1 5 2014 2.1621373
1 1 1 1 5 2014  7.840507
0 1 1 3 5 2016  6.721983
. 1 1 1 6 2018 2.5998094
. 1 1 1 5 2016  3.981817
0 1 1 2 4 2015 2.0788703
0 1 2 2 4 2014  6.954388
1 3 1 1 5 2017   6.60916
. 1 1 2 5 2018   5.66036
end
label values nasses3 nasses3
label def nasses3 1 "italia", modify
label def nasses3 3 "low income countries", modify
label values sg11 sg11
label def sg11 1 "maschio", modify
label def sg11 2 "femmina", modify
label values cletad cletad
label def cletad 3 "25-34 anni", modify
label def cletad 4 "35-44 anni", modify
label def cletad 5 "45-54 anni", modify
label def cletad 6 "55-64 anni", modify

Code:
. heckman inc20 i.nasses3 i.sg11 i.tit3 i.cletad i.anno shagreg c.shagreg#nasses3, select (i.nasses3 i.sg11 i.tit3 i.cletad i.anno sh
> agreg c.shagreg#nasses3 i.famstat5) twostep

Heckman selection model -- two-step estimates   Number of obs     =    1118684
(regression model with sample selection)              Selected    =    493,499
                                                      Nonselected =    625,185

                                                Wald chi2(16)     =   47204.41
                                                Prob > chi2       =     0.0000

-----------------------------------------------------------------------------------------------------
                              inc20 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
------------------------------------+----------------------------------------------------------------
inc20                               |
                            nasses3 |
             high income countries  |   .0431644   .0075018     5.75   0.000      .028461    .0578677
              low income countries  |    .126201    .003864    32.66   0.000     .1186276    .1337744
                                    |
                               sg11 |
                           femmina  |   .1592556   .0016643    95.69   0.000     .1559936    .1625175
                                    |
                               tit3 |
                                 2  |   .0022904   .0027069     0.85   0.397     -.003015    .0075958
                                 3  |  -.0673849   .0032428   -20.78   0.000    -.0737407   -.0610292
                                    |
                             cletad |
                        25-34 anni  |   .0576349    .006063     9.51   0.000     .0457516    .0695182
                        35-44 anni  |   .0301163   .0069944     4.31   0.000     .0164076     .043825
                        45-54 anni  |    .002839    .007034     0.40   0.686    -.0109473    .0166253
                        55-64 anni  |  -.1246012   .0048802   -25.53   0.000    -.1341663   -.1150362
                                    |
                               anno |
                              2015  |  -.0024898   .0018466    -1.35   0.178    -.0061091    .0011295
                              2016  |   .0080837   .0018876     4.28   0.000     .0043842    .0117833
                              2017  |   .0185776   .0018876     9.84   0.000     .0148779    .0222773
                              2018  |   .0199895   .0019185    10.42   0.000     .0162292    .0237497
                                    |
                            shagreg |   .0020818   .0004167     5.00   0.000      .001265    .0028985
                                    |
                  nasses3#c.shagreg |
             high income countries  |   .0027072   .0016497     1.64   0.101    -.0005261    .0059406
              low income countries  |   .0250872   .0010147    24.72   0.000     .0230984     .027076
                                    |
                              _cons |  -.1918065   .0124832   -15.37   0.000    -.2162732   -.1673398
------------------------------------+----------------------------------------------------------------
select                              |
                            nasses3 |
             high income countries  |  -.1207626   .0156957    -7.69   0.000    -.1515255   -.0899996
              low income countries  |  -.0050783   .0083631    -0.61   0.544    -.0214696     .011313
                                    |
                               sg11 |
                           femmina  |   -.260509   .0025667  -101.49   0.000    -.2655397   -.2554782
                                    |
                               tit3 |
                                 2  |   .4669964    .002781   167.93   0.000     .4615458     .472447
                                 3  |    .552387   .0038212   144.56   0.000     .5448976    .5598764
                                    |
                             cletad |
                        25-34 anni  |   .7875154   .0054319   144.98   0.000     .7768692    .7981617
                        35-44 anni  |   .8949092   .0058644   152.60   0.000     .8834152    .9064033
                        45-54 anni  |   .8811257   .0059315   148.55   0.000     .8695001    .8927513
                        55-64 anni  |   .3945313   .0061617    64.03   0.000     .3824546     .406608
                                    |
                               anno |
                              2015  |   .0199867   .0039074     5.12   0.000     .0123284     .027645
                              2016  |   .0665531    .003962    16.80   0.000     .0587877    .0743184
                              2017  |   .0662696   .0039608    16.73   0.000     .0585066    .0740326
                              2018  |   .0863712   .0039899    21.65   0.000     .0785511    .0941914
                                    |
                            shagreg |  -.0591747   .0005719  -103.47   0.000    -.0602956   -.0580539
                                    |
                  nasses3#c.shagreg |
             high income countries  |   .0089005   .0033042     2.69   0.007     .0024245    .0153766
              low income countries  |   .0283409   .0020948    13.53   0.000     .0242352    .0324466
                                    |
                           famstat5 |
  coniugato/a convivente con figli  |    -.04411   .0039826   -11.08   0.000    -.0519157   -.0363043
coniugato/a convivente senza figli  |  -.1225326   .0047492   -25.80   0.000    -.1318408   -.1132244
    figlio che vive con i genitori  |  -.3911102   .0052395   -74.65   0.000    -.4013795    -.380841
                      monogenitore  |     .10228   .0069334    14.75   0.000     .0886909    .1158692
                                    |
                              _cons |  -.6348052   .0075043   -84.59   0.000    -.6495134   -.6200969
------------------------------------+----------------------------------------------------------------
/mills                              |
                             lambda |   .3578496   .0079531    45.00   0.000     .3422619    .3734374
------------------------------------+----------------------------------------------------------------
                                rho |    0.78044
                              sigma |  .45852232
-----------------------------------------------------------------------------------------------------

. margins nasses3, at(shagreg=(0(4)12))

Predictive margins                              Number of obs     =  1,118,684
Model VCE    : Conventional

Expression   : Linear prediction, predict()

1._at        : shagreg         =           0

2._at        : shagreg         =           4

3._at        : shagreg         =           8

4._at        : shagreg         =          12

------------------------------------------------------------------------------------------
                         |            Delta-method
                         |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------------------+----------------------------------------------------------------
             _at#nasses3 |
               1#italia  |  -.1243442   .0063967   -19.44   0.000    -.1368815   -.1118069
1#high income countries  |  -.0811798    .009987    -8.13   0.000     -.100754   -.0616056
 1#low income countries  |   .0018568   .0070757     0.26   0.793    -.0120113    .0157248
               2#italia  |  -.1160171   .0075079   -15.45   0.000    -.1307323    -.101302
2#high income countries  |  -.0620238    .008536    -7.27   0.000    -.0787541   -.0452936
 2#low income countries  |   .1105327   .0068814    16.06   0.000     .0970454      .12402
               3#italia  |  -.1076901   .0087963   -12.24   0.000    -.1249306   -.0904496
3#high income countries  |  -.0428678   .0115183    -3.72   0.000    -.0654433   -.0202924
 3#low income countries  |   .2192087   .0086493    25.34   0.000     .2022563     .236161
               4#italia  |   -.099363   .0101951    -9.75   0.000     -.119345    -.079381
4#high income countries  |  -.0237118   .0167082    -1.42   0.156    -.0564594    .0090357
 4#low income countries  |   .3278846   .0115081    28.49   0.000     .3053291    .3504401
------------------------------------------------------------------------------------------
Code:
logit inc20 i.nasses3 i.sg11 i.tit3 i.cletad i.anno shagreg c.shagreg#nasses3

Iteration 0:   log likelihood = -241621.34  
Iteration 1:   log likelihood = -206432.72  
Iteration 2:   log likelihood = -203216.43  
Iteration 3:   log likelihood = -203196.69  
Iteration 4:   log likelihood = -203196.69  

Logistic regression                             Number of obs     =    493,500
                                                LR chi2(16)       =   76849.32
                                                Prob > chi2       =     0.0000
Log likelihood = -203196.69                     Pseudo R2         =     0.1590

----------------------------------------------------------------------------------------
                 inc20 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-----------------------+----------------------------------------------------------------
               nasses3 |
high income countries  |   .5621639    .046834    12.00   0.000     .4703709     .653957
 low income countries  |   .9428491   .0222722    42.33   0.000     .8991964    .9865018
                       |
                  sg11 |
              femmina  |   1.635258   .0087927   185.98   0.000     1.618024    1.652491
                       |
                  tit3 |
                    2  |  -.7434007   .0088528   -83.97   0.000    -.7607519   -.7260494
                    3  |  -1.554398   .0132781  -117.06   0.000    -1.580423   -1.528374
                       |
                cletad |
           25-34 anni  |  -.9948178   .0169151   -58.81   0.000    -1.027971   -.9616648
           35-44 anni  |  -1.541289   .0163707   -94.15   0.000    -1.573375   -1.509203
           45-54 anni  |  -1.787111   .0163471  -109.32   0.000     -1.81915   -1.755071
           55-64 anni  |   -1.95677   .0178128  -109.85   0.000    -1.991682   -1.921857
                       |
                  anno |
                 2015  |  -.0568865   .0125321    -4.54   0.000     -.081449   -.0323241
                 2016  |  -.0564039   .0125813    -4.48   0.000    -.0810628   -.0317451
                 2017  |   .0292715   .0124994     2.34   0.019     .0047731    .0537699
                 2018  |   .0059687   .0125931     0.47   0.636    -.0187134    .0306508
                       |
               shagreg |   .1241858   .0019213    64.64   0.000     .1204201    .1279515
                       |
     nasses3#c.shagreg |
high income countries  |  -.0203934   .0100241    -2.03   0.042    -.0400403   -.0007464
 low income countries  |   .0352157   .0056569     6.23   0.000     .0241283     .046303
                       |
                 _cons |  -.9381701   .0193737   -48.42   0.000     -.976142   -.9001983
----------------------------------------------------------------------------------------

. margins nasses3, at(shagreg=(0(4)12))

Predictive margins                              Number of obs     =    493,500
Model VCE    : OIM

Expression   : Pr(inc20), predict()

1._at        : shagreg         =           0

2._at        : shagreg         =           4

3._at        : shagreg         =           8

4._at        : shagreg         =          12

------------------------------------------------------------------------------------------
                         |            Delta-method
                         |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------------------+----------------------------------------------------------------
             _at#nasses3 |
               1#italia  |   .1163328   .0008455   137.59   0.000     .1146756      .11799
1#high income countries  |   .1780373   .0058645    30.36   0.000      .166543    .1895316
 1#low income countries  |    .231282   .0030835    75.01   0.000     .2252384    .2373256
               2#italia  |   .1698266   .0005533   306.92   0.000     .1687421    .1709111
2#high income countries  |   .2365587   .0033462    70.69   0.000     .2300003    .2431172
 2#low income countries  |   .3398336   .0018796   180.80   0.000     .3361497    .3435174
               3#italia  |   .2390556   .0013317   179.51   0.000     .2364455    .2416657
3#high income countries  |   .3055811   .0078081    39.14   0.000     .2902776    .3208846
 3#low income countries  |   .4656072    .005409    86.08   0.000     .4550058    .4762087
               4#italia  |   .3231823   .0028526   113.29   0.000     .3175913    .3287732
4#high income countries  |   .3832656   .0157352    24.36   0.000     .3524251    .4141061
 4#low income countries  |   .5955947   .0093665    63.59   0.000     .5772367    .6139527
------------------------------------------------------------------------------------------