Working on MI
Everything works up to the MI estimate. See Error below
Have been to the Stata manual and viewed the videos and believe i am reproducing exactly what is recommended but with no luck.
I appreciate any advice/help.
Code:
use opioid_temp, clear
mi set mlong
mi register imputed conf5_refer1_rc ddppq_adequacy_totrev ddppq_legitmacy_totrev ddppq_support_totrev ddppq_esteem_totrev ///
ddppq_satisfaction_totrev /*ddppq_tot_rev*/gender_rc yearssincegrad ocs_or_fell perc_msk perc_takeopioid ///
/*oft_curropioid oft_pastopioid oft_goalopioid oft_redopioid oft_histmisuse*/ ptrole_opiodi_rc hrs_trainmisuse_rc
mi impute chained (regress) ddppq_adequacy_totrev ddppq_legitmacy_totrev ddppq_support_totrev ddppq_esteem_totrev ///
ddppq_satisfaction_totrev /*ddppq_tot_rev*/ yearssincegrad perc_msk perc_takeopioid, add(10) rseed(888)
mi impute chained (logit) conf5_refer1_rc ptrole_opiodi_rc hrs_trainmisuse_rc gender_rc, add(10)
mi xeq 0 1 10: sum ddppq_adequacy_totrev ddppq_legitmacy_totrev ddppq_support_totrev ddppq_esteem_totrev ///
ddppq_satisfaction_totrev yearssincegrad perc_msk perc_takeopioid conf5_refer1_rc ptrole_opiodi_rc hrs_trainmisuse_rc gender_rc
mi estimate : logistic conf5_refer1_rc ddppq_adequacy_totrev ddppq_legitmacy_totrev ddppq_support_totrev ddppq_esteem_totrev ddppq_satisfaction_totrev ///
gender_rc yearssincegrad ocs_or_fell perc_msk perc_takeopioid ptrole_opiodi_rc hrs_trainmisuse_rc
Error:
Imputations (20):
.........10x
estimation sample varies between m=1 and m=11; click here for details
sample data
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input byte conf5_refer1_rc float(ddppq_adequacy_totrev ddppq_legitmacy_totrev ddppq_support_totrev ddppq_esteem_totrev ddppq_satisfaction_totrev) byte gender_rc float(yearssincegrad ocs_or_fell perc_msk perc_takeopioid) 0 27 13 4 19 19 0 3 1 5 3 0 25 11 16 21 17 0 8 1 3 2 1 23 9 13 16 14 1 30 1 5 2 0 24 8 7 15 13 0 6 1 5 2 0 19 5 9 14 15 1 5 0 5 1 1 22 9 7 11 12 1 5 1 5 2 1 25 11 13 21 17 1 19 1 5 2 0 35 13 4 17 17 0 23 1 5 1 1 35 12 14 21 17 0 21 1 1 1 0 22 7 5 13 15 0 41 0 4 1 1 38 10 16 25 20 1 35 0 5 3 1 26 11 16 17 16 1 31 1 2 2 0 16 11 6 17 16 0 4 0 4 4 1 28 11 15 21 14 0 29 0 1 1 1 31 11 12 21 17 0 13 0 1 1 0 30 13 17 18 22 0 15 1 5 3 1 31 9 13 17 20 0 . 0 5 3 1 37 13 11 18 20 0 18 1 1 2 1 15 11 6 15 18 1 37 1 5 3 0 36 11 16 17 11 1 1 0 5 3 1 30 11 19 16 19 1 1 0 5 3 1 35 11 11 21 22 0 53 0 5 1 0 16 10 15 11 13 1 5 1 5 2 1 30 10 19 18 20 1 3 0 2 2 0 25 11 6 23 19 1 4 0 4 4 0 10 9 4 16 13 1 12 0 1 1 0 11 11 12 17 18 1 1 0 5 2 0 31 11 16 21 16 1 25 1 5 2 1 29 13 16 22 14 1 3 1 5 1 1 15 11 . 18 18 1 17 1 1 1 . 22 11 . . . 1 3 0 5 2 1 33 11 16 25 19 1 36 0 1 1 1 32 10 9 14 14 0 3 0 5 3 0 29 10 14 18 10 0 1 0 5 3 . . . . . . 0 17 0 5 1 0 36 13 19 16 16 0 2 1 5 2 1 26 10 12 16 15 0 7 1 5 2 1 38 13 3 23 23 1 25 0 1 1 1 28 11 7 18 19 1 2 0 4 2 1 32 9 10 20 18 1 13 0 2 4 0 25 7 13 16 25 1 3 0 5 3 0 29 8 12 . 12 1 17 0 2 5 0 12 9 3 22 15 1 20 1 5 1 1 36 11 10 23 20 1 21 0 5 4 0 29 13 10 21 20 1 . 0 5 2 1 40 13 10 23 25 0 3 0 2 4 . 36 13 . . . . 38 1 5 1 1 30 11 16 16 16 1 8 0 5 3 1 36 12 16 20 18 1 15 1 1 1 0 22 11 7 19 19 0 20 1 5 3 0 19 8 13 11 11 0 9 0 5 3 1 34 9 13 22 18 1 40 0 5 . 1 28 10 16 17 17 1 26 0 1 1 1 37 11 16 21 21 0 30 0 4 3 1 31 13 19 17 22 1 10 1 5 2 1 33 13 16 21 17 1 42 1 5 2 1 28 9 13 17 17 0 6 0 3 3 1 41 13 18 22 21 1 15 0 1 2 1 16 11 16 22 18 1 1 0 5 2 1 26 13 19 22 11 1 29 0 1 2 0 19 10 11 14 17 1 1 0 5 4 1 16 3 13 8 11 1 1 0 5 3 . . . . . . 0 15 1 5 2 1 17 11 19 19 15 0 15 1 5 2 0 28 9 16 18 16 0 16 1 5 3 1 35 13 16 16 17 0 37 0 5 2 0 20 11 14 14 16 1 4 1 2 3 0 25 11 13 18 17 1 3 0 3 4 0 33 8 10 21 19 0 2 0 5 2 1 35 11 13 20 17 1 24 0 5 3 1 . 7 18 18 14 1 20 1 5 1 1 36 12 18 21 22 1 10 0 1 3 1 30 11 10 22 23 0 17 1 1 2 0 21 10 7 18 12 1 4 0 5 3 1 22 13 12 15 14 0 4 1 1 3 1 27 9 8 23 11 1 4 1 4 1 . . . . . . 0 8 1 5 1 1 34 11 16 14 21 0 2 0 5 3 0 19 12 8 12 9 1 10 0 5 4 0 22 9 7 13 11 0 7 1 5 3 0 34 9 13 22 21 1 7 0 1 1 0 20 9 16 16 14 1 1 0 5 3 . 23 7 10 14 14 0 2 1 5 4 . 26 9 . . . 0 22 1 5 3 0 15 11 7 21 22 0 11 1 1 3 1 26 11 16 17 16 1 3 0 5 2 1 39 12 16 20 18 0 26 1 2 2 0 33 9 11 25 14 1 1 0 5 3 1 28 12 13 11 22 0 16 1 5 2 1 22 4 13 22 16 1 19 1 1 3 1 32 10 16 16 15 1 28 0 3 4 1 30 11 7 11 15 1 37 1 5 3 1 18 11 15 22 15 0 31 0 5 2 0 28 11 16 17 17 1 5 0 5 4 1 12 11 16 17 13 0 2 0 5 4 . . . . . . 0 10 1 5 1 0 29 13 13 20 17 0 6 1 5 3 1 34 13 19 21 21 1 31 0 5 1 1 33 9 19 20 17 0 12 1 5 3 1 36 10 17 24 21 1 28 1 5 3 end label values conf5_refer1_rc confreflab1 label def confreflab1 0 "0 1-4 less confident", modify label def confreflab1 1 "1 5-7 more confident", modify label values gender_rc gendlab label def gendlab 0 "0 male and other", modify label def gendlab 1 "1 female", modify label values perc_msk perc_msk_ label def perc_msk_ 1 "0 - 20%", modify label def perc_msk_ 2 "21- 40%", modify label def perc_msk_ 3 "41 - 60%", modify label def perc_msk_ 4 "61 - 80%", modify label def perc_msk_ 5 "81 - 100%", modify label values perc_takeopioid perc_takeopioid_ label def perc_takeopioid_ 1 "0 - 20%", modify label def perc_takeopioid_ 2 "21- 40%", modify label def perc_takeopioid_ 3 "41 - 60%", modify label def perc_takeopioid_ 4 "61 - 80%", modify label def perc_takeopioid_ 5 "81 - 100%", modify
0 Response to multiple imputation error after MI Estimate logistic regression
Post a Comment