I want to calculate whether the difference between the mean (and median) of COGS elasticity of the first and last (fifth) quintile of the variable CC_rank is significant. However, I don't know how to (1) calculate this and (2) how to interpret the outcome (where to find the t-statistic and where to find whether it is statistically significant)? See also the attachment. My dataset looks as follows:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input str24 gvkey double fyear str16 sic float CC byte CC_rank float(COGS_ELAST_w SGA_ELAST_w) double DemandUnc_w "001013" 2010 "3661" .083213 3 . . . "001161" 2010 "3674" .0464763 2 . . . "001161" 2011 "3674" .0484 2 .8325894 1.0834965 . "001161" 2012 "3674" .0484 2 . . . "001161" 2016 "3674" .01 1 . . . "001161" 2017 "3674" .0036 1 .9103003 .763042 . "001161" 2018 "3674" .0049 1 .8704142 .8210957 .05716461357229579 "001173" 2010 "3812" .0465214 2 . . . "001173" 2011 "3812" .01961911 1 . . . "001173" 2012 "3812" .03151871 2 . 3.233185 . "001210" 2010 "4513" .22369373 4 . . . "001210" 2011 "4513" .22575164 4 1.0550966 -.1632245 . "001210" 2012 "4513" .221005 4 .9377158 .04400323 .5803610081769496 "001210" 2013 "4513" .2452515 5 . . .5803610081769496 "001210" 2014 "4513" .2217242 4 .9452768 .13200726 .43110896032413987 "001210" 2015 "4513" .11611764 4 .9242028 .4248407 .7402868053082245 "001210" 2016 "4513" .21484175 4 -.847032 -1.1023777 2.172144231033772 "001210" 2017 "4513" .13027234 4 .9137021 .4739289 2.3935216866991658 "001210" 2018 "4513" .08727254 3 .9028409 .5478527 2.238168254026734 "001234" 2010 "3841" .01985963 1 . . . "001234" 2011 "3841" .016457789 1 -.2793875 .2906297 . "001239" 2010 "2844" .05759989 2 . . . "001266" 2010 "0100" .11921135 4 . . . "001266" 2011 "0100" .12577406 4 .56089216 .18839873 . "001266" 2012 "0100" .12941135 4 .8732479 -.3650734 .2965428658991338 "001266" 2013 "0100" .1491128 4 . . .2965428658991338 "001308" 2010 "1381" .09653551 3 . . . "001327" 2018 "3674" .2209 4 . . . "001327" 2019 "3674" .26009998 5 . . . "001439" 2010 "4955" .0008999542 1 . . . "001439" 2011 "4955" .0003999122 1 .8482099 .4419686 . "001468" 2010 "2771" .03676287 2 . . . "001468" 2011 "2771" .03742559 2 .8881156 .869736 . "001468" 2012 "2771" .03189892 2 .8086588 .9599941 .38805648665823206 "001491" 2010 "2621" .0049 1 . . . "001491" 2011 "2621" .002500038 1 .9964366 .53563666 . "001491" 2013 "2621" .003599904 1 . . . "001554" 2015 "3844" .067571625 3 . . . "001562" 2010 "7372" .011138536 1 . . . "001562" 2011 "7372" .015645713 1 .5818798 .545915 . "001562" 2012 "7372" .02348078 1 . . . "001562" 2013 "7372" .012288558 1 . -.09442728 3.412793537597948 "001562" 2014 "7372" .00881397 1 1.4814912 -.5438149 2.4343592195957373 "001562" 2015 "7372" .005769911 1 .5633623 .51793754 2.192436310568739 "001562" 2016 "7372" .007309522 1 . . 2.2340672499335534 "001562" 2017 "7372" .005353227 1 . .4209529 1.963939500441383 "001562" 2018 "7372" .005839577 1 . . .8023224776695616 "001585" 2010 "2870" .10590045 3 . . . "001585" 2011 "2870" .1121004 3 .867059 .6470457 . "001585" 2012 "2870" .10370042 3 .7632479 .669174 .13552808042120704 "001602" 2010 "2836" .3626603 5 . . . "001602" 2011 "2836" .3606658 5 .7902785 1.028621 . "001602" 2012 "2836" .3435637 5 .8299867 .8416294 .8183663690603937 "001602" 2013 "2836" .3568908 5 . .9439919 .6235664327598904 "001602" 2014 "2836" .3959017 5 .5811682 . .5243920727613531 "001602" 2015 "2836" .4327322 5 . . .4775928940069547 "001602" 2016 "2836" .45177975 5 . .5466805 .10066452552318544 "001602" 2017 "2836" .53243047 5 . . .07947048023957266 "001602" 2018 "2836" .59016216 5 .768473 .953599 .24695015632388578 "001602" 2019 "2836" .6104662 5 . . .2946093478598564 "001632" 2017 "3674" .019599976 1 . . . "001632" 2019 "3674" .10000005 3 .7769899 .7730811 . "001633" 2010 "3845" .03690052 2 . . . "001633" 2011 "3845" .0289996 2 .8402821 .7360951 . "001633" 2012 "3845" .04400022 2 .832584 .3538707 .1070145572918289 "001633" 2013 "3845" .04689984 2 .5822065 .7978694 .1975599254421822 "001633" 2014 "3845" .06420007 3 . . .1975599254421822 "001633" 2015 "3845" .06070021 3 .792922 .3263388 .3435673895256707 "001633" 2016 "3845" .04339987 2 . . .3213443800766225 "001633" 2017 "3845" .034000132 2 . . .2799902812023593 "001634" 2010 "7371" .012102722 1 . . . "001634" 2011 "7371" .016999707 1 -3.351743 . . "001634" 2012 "7371" .009799206 1 . . . "001635" 2010 "3663" .03809475 2 . . . "001635" 2011 "3663" .03323105 2 .7774491 .23374787 . "001635" 2012 "3663" .03840341 2 . . . "001635" 2013 "3663" .05416441 2 .6170333 -.2636976 .042752414430298556 "001659" 2010 "5150" .006282527 1 . . . "001659" 2011 "5150" .003188234 1 .9911377 .4569585 . "001659" 2012 "5150" .004327188 1 .996388 .4541579 .37514235509970606 "001659" 2013 "5150" .002810089 1 .9911712 .571389 .6371160473187414 "001661" 2010 "1381" 9.586567e-06 1 . . . "001661" 2011 "1381" 6.963934e-06 1 .9559199 .6582361 . "001678" 2010 "1311" .0225 1 . . . "001678" 2011 "1311" .029 2 .8195487 .5177277 . "001678" 2012 "1311" .0569 2 1.559604 .8692445 2.488791635055578 "001678" 2013 "1311" .0576 2 . . 2.488791635055578 "001678" 2014 "1311" .0361 2 . . 2.488791635055578 "001678" 2015 "1311" .0121 1 . . 2.488791635055578 "001678" 2016 "1311" .0585 3 . . . "001678" 2017 "1311" .05834525 3 . .7501639 . "001681" 2010 "3330" .3589424 5 . . . "001681" 2011 "3330" .07130198 3 .9148737 . . "001681" 2012 "3330" .03941382 2 . . . "001682" 2010 "1311" .2901255 5 . . . "001682" 2011 "1311" .1693205 4 .8959426 . . "001682" 2012 "1311" .1717091 4 .6700848 .7156118 .36639115206229805 "001682" 2013 "1311" .18412916 4 .6155809 . .3225365227824795 "001704" 2010 "3559" .031699978 2 . . . "001704" 2011 "3559" .0344105 2 .870629 . . end
0 Response to Mean/median difference between quintiles significant and how to calculate
Post a Comment