This is how I generated the variables for the lower and upper bounds of the intervals (values are the $ amounts of the wage interval bounds):
Code:
. recode Outcome (1=.)(2=500)(3=600)(4=700)(5=800)(6=900)(7=1000)(8=1200)(9=15 > 00), gen(Outcome1) (2742 differences between Outcome and Outcome1) . . recode Outcome (1=500)(2=600)(3=700)(4=800)(5=900)(6=1000)(7=1200)(8=1500)(9 > =.), gen(Outcome2) (2742 differences between Outcome and Outcome2)
Ignoring covariates, my main variables are Outcome, Treatment and Instrument. Treatment and Instrument are both binary dummies in this specification.
My cmp code looks like this - for simple comparability now I show results with "$cmp_cont" for the first stage and later compare it to "reg", but the same applies when specifying probit for both:
Code:
. cmp (Treatment = Instrument) (Outcome1 Outcome2 = Treatment), indicators($cm > p_cont $cmp_int) Fitting individual models as starting point for full model fit. Note: For programming reasons, these initial estimates may deviate from your s > pecification. For exact fits of each equation alone, run cmp separately on each. Source | SS df MS Number of obs = 3,480 -------------+---------------------------------- F(1, 3478) = 4295.42 Model | 253.611604 1 253.611604 Prob > F = 0.0000 Residual | 205.349316 3,478 .059042356 R-squared = 0.5526 -------------+---------------------------------- Adj R-squared = 0.5524 Total | 458.96092 3,479 .131923231 Root MSE = .24299 ------------------------------------------------------------------------------ Treatment | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- Instrument | .6617225 .0100966 65.54 0.000 .6419267 .6815182 _cons | .3215259 .0089688 35.85 0.000 .3039413 .3391105 ------------------------------------------------------------------------------ Interval regression Number of obs = 2,691 Uncensored = 0 Left-censored = 352 Right-censored = 12 Interval-cens. = 2,327 LR chi2(1) = 1.39 Log likelihood = -5365.2625 Prob > chi2 = 0.2384 ------------------------------------------------------------------------------ | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- Treatment | -13.57253 11.5116 -1.18 0.238 -36.13485 8.989787 _cons | 749.6888 10.5316 71.18 0.000 729.0472 770.3303 -------------+---------------------------------------------------------------- /lnsigma | 5.373939 .0157219 341.81 0.000 5.343125 5.404753 -------------+---------------------------------------------------------------- sigma | 215.7109 3.391395 209.1652 222.4614 ------------------------------------------------------------------------------ Fitting constant-only model for LR test of overall model fit. Fitting full model. Iteration 0: log likelihood = -5381.3669 Iteration 1: log likelihood = -5377.7781 Iteration 2: log likelihood = -5377.7629 Iteration 3: log likelihood = -5377.7629 Mixed-process regression Number of obs = 3,480 LR chi2(2) = 2800.95 Log likelihood = -5377.7629 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- Treatment | Instrument | .6617225 .0100937 65.56 0.000 .6419393 .6815057 _cons | .3215259 .0089662 35.86 0.000 .3039524 .3390993 -------------+---------------------------------------------------------------- Outcome1 | Treatment | -29.47945 15.82494 -1.86 0.062 -60.49576 1.536867 _cons | 763.2793 14.03154 54.40 0.000 735.778 790.7806 -------------+---------------------------------------------------------------- /lnsig_1 | -1.415038 .0119866 -118.05 0.000 -1.438531 -1.391544 /lnsig_2 | 5.374463 .015747 341.30 0.000 5.343599 5.405327 /atanhrho_12 | .0408718 .0278674 1.47 0.142 -.0137473 .0954909 -------------+---------------------------------------------------------------- sig_1 | .2429165 .0029117 .2372761 .248691 sig_2 | 215.8239 3.398576 209.2646 222.5889 rho_12 | .0408491 .0278209 -.0137464 .0952017 ------------------------------------------------------------------------------
Code:
. reg Treatment Instrument, vce(robust) Linear regression Number of obs = 3,480 F(1, 3478) = 1443.35 Prob > F = 0.0000 R-squared = 0.5526 Root MSE = .24299 ------------------------------------------------------------------------------ | Robust Treatment | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- Instrument | .6617225 .0174177 37.99 0.000 .6275726 .6958724 _cons | .3215259 .0172445 18.65 0.000 .2877155 .3553363 ------------------------------------------------------------------------------ . predict fitted (option xb assumed; fitted values) . intreg Outcome1 Outcome2 fitted, vce(robust) Fitting constant-only model: Iteration 0: log pseudolikelihood = -5491.1709 Iteration 1: log pseudolikelihood = -5464.7364 Iteration 2: log pseudolikelihood = -5464.683 Iteration 3: log pseudolikelihood = -5464.683 Fitting full model: Iteration 0: log pseudolikelihood = -5489.4157 Iteration 1: log pseudolikelihood = -5462.9742 Iteration 2: log pseudolikelihood = -5462.9213 Iteration 3: log pseudolikelihood = -5462.9213 Interval regression Number of obs = 2,742 Uncensored = 0 Left-censored = 357 Right-censored = 12 Interval-cens. = 2,373 Wald chi2(1) = 3.53 Log pseudolikelihood = -5462.9213 Prob > chi2 = 0.0603 ------------------------------------------------------------------------------ | Robust | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- fitted | -28.91668 15.39157 -1.88 0.060 -59.0836 1.250254 _cons | 762.8507 13.55528 56.28 0.000 736.2829 789.4186 -------------+---------------------------------------------------------------- /lnsigma | 5.371954 .0190345 282.22 0.000 5.334647 5.409261 -------------+---------------------------------------------------------------- sigma | 215.2831 4.097817 207.3995 223.4664 ------------------------------------------------------------------------------
0 Response to "intreg" and "cmp" give different results for interval regression
Post a Comment