This is how I generated the variables for the lower and upper bounds of the intervals (values are the $ amounts of the wage interval bounds):
Code:
. recode Outcome (1=.)(2=500)(3=600)(4=700)(5=800)(6=900)(7=1000)(8=1200)(9=15 > 00), gen(Outcome1) (2742 differences between Outcome and Outcome1) . . recode Outcome (1=500)(2=600)(3=700)(4=800)(5=900)(6=1000)(7=1200)(8=1500)(9 > =.), gen(Outcome2) (2742 differences between Outcome and Outcome2)
Ignoring covariates, my main variables are Outcome, Treatment and Instrument. Treatment and Instrument are both binary dummies in this specification.
My cmp code looks like this - for simple comparability now I show results with "$cmp_cont" for the first stage and later compare it to "reg", but the same applies when specifying probit for both:
Code:
. cmp (Treatment = Instrument) (Outcome1 Outcome2 = Treatment), indicators($cm
> p_cont $cmp_int)
Fitting individual models as starting point for full model fit.
Note: For programming reasons, these initial estimates may deviate from your s
> pecification.
For exact fits of each equation alone, run cmp separately on each.
Source | SS df MS Number of obs = 3,480
-------------+---------------------------------- F(1, 3478) = 4295.42
Model | 253.611604 1 253.611604 Prob > F = 0.0000
Residual | 205.349316 3,478 .059042356 R-squared = 0.5526
-------------+---------------------------------- Adj R-squared = 0.5524
Total | 458.96092 3,479 .131923231 Root MSE = .24299
------------------------------------------------------------------------------
Treatment | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Instrument | .6617225 .0100966 65.54 0.000 .6419267 .6815182
_cons | .3215259 .0089688 35.85 0.000 .3039413 .3391105
------------------------------------------------------------------------------
Interval regression Number of obs = 2,691
Uncensored = 0
Left-censored = 352
Right-censored = 12
Interval-cens. = 2,327
LR chi2(1) = 1.39
Log likelihood = -5365.2625 Prob > chi2 = 0.2384
------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Treatment | -13.57253 11.5116 -1.18 0.238 -36.13485 8.989787
_cons | 749.6888 10.5316 71.18 0.000 729.0472 770.3303
-------------+----------------------------------------------------------------
/lnsigma | 5.373939 .0157219 341.81 0.000 5.343125 5.404753
-------------+----------------------------------------------------------------
sigma | 215.7109 3.391395 209.1652 222.4614
------------------------------------------------------------------------------
Fitting constant-only model for LR test of overall model fit.
Fitting full model.
Iteration 0: log likelihood = -5381.3669
Iteration 1: log likelihood = -5377.7781
Iteration 2: log likelihood = -5377.7629
Iteration 3: log likelihood = -5377.7629
Mixed-process regression Number of obs = 3,480
LR chi2(2) = 2800.95
Log likelihood = -5377.7629 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Treatment |
Instrument | .6617225 .0100937 65.56 0.000 .6419393 .6815057
_cons | .3215259 .0089662 35.86 0.000 .3039524 .3390993
-------------+----------------------------------------------------------------
Outcome1 |
Treatment | -29.47945 15.82494 -1.86 0.062 -60.49576 1.536867
_cons | 763.2793 14.03154 54.40 0.000 735.778 790.7806
-------------+----------------------------------------------------------------
/lnsig_1 | -1.415038 .0119866 -118.05 0.000 -1.438531 -1.391544
/lnsig_2 | 5.374463 .015747 341.30 0.000 5.343599 5.405327
/atanhrho_12 | .0408718 .0278674 1.47 0.142 -.0137473 .0954909
-------------+----------------------------------------------------------------
sig_1 | .2429165 .0029117 .2372761 .248691
sig_2 | 215.8239 3.398576 209.2646 222.5889
rho_12 | .0408491 .0278209 -.0137464 .0952017
------------------------------------------------------------------------------Code:
. reg Treatment Instrument, vce(robust)
Linear regression Number of obs = 3,480
F(1, 3478) = 1443.35
Prob > F = 0.0000
R-squared = 0.5526
Root MSE = .24299
------------------------------------------------------------------------------
| Robust
Treatment | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Instrument | .6617225 .0174177 37.99 0.000 .6275726 .6958724
_cons | .3215259 .0172445 18.65 0.000 .2877155 .3553363
------------------------------------------------------------------------------
. predict fitted
(option xb assumed; fitted values)
. intreg Outcome1 Outcome2 fitted, vce(robust)
Fitting constant-only model:
Iteration 0: log pseudolikelihood = -5491.1709
Iteration 1: log pseudolikelihood = -5464.7364
Iteration 2: log pseudolikelihood = -5464.683
Iteration 3: log pseudolikelihood = -5464.683
Fitting full model:
Iteration 0: log pseudolikelihood = -5489.4157
Iteration 1: log pseudolikelihood = -5462.9742
Iteration 2: log pseudolikelihood = -5462.9213
Iteration 3: log pseudolikelihood = -5462.9213
Interval regression Number of obs = 2,742
Uncensored = 0
Left-censored = 357
Right-censored = 12
Interval-cens. = 2,373
Wald chi2(1) = 3.53
Log pseudolikelihood = -5462.9213 Prob > chi2 = 0.0603
------------------------------------------------------------------------------
| Robust
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
fitted | -28.91668 15.39157 -1.88 0.060 -59.0836 1.250254
_cons | 762.8507 13.55528 56.28 0.000 736.2829 789.4186
-------------+----------------------------------------------------------------
/lnsigma | 5.371954 .0190345 282.22 0.000 5.334647 5.409261
-------------+----------------------------------------------------------------
sigma | 215.2831 4.097817 207.3995 223.4664
------------------------------------------------------------------------------
0 Response to "intreg" and "cmp" give different results for interval regression
Post a Comment