I do have a panel dataset where every company has a unique ID (-company-) and their returns (-ri). I do run my regression with STATA and fix my ID over the time period with this code:
Code:
xtset company monthly_date, monthly xtreg ri smb_5 hml rmw cma mktminusrf logdiff_fintech_funding,fe
I guess/know that I have to use the normal reg command for this because holding one company fix would not make sense. The normal pooled OLS regression (with robust) would be this
Code:
reg ri smb_5 hml rmw cma mktminusrf logdiff_fintech_funding, vce(robust)
I could upload the data in wide format and run each regression for each company but maybe there is a way to do it in long format.
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input double logdiff_fintech_funding float monthly_date double(mktminusrf smb_5 hml rmw cma) byte company double ri -2.428878818318338 601 3.4 1.53 2.74 -.55 1.43 1 1.079242090318634 4.750675543873377 602 6.31 1.85 2.01 -.9 1.67 1 7.86393930364869 -1.547824874555269 603 2 5.03 3.12 .49 1.69 1 7.512007394694056 -2.377775945715615 604 -7.89 -.08 -2.32 1.38 -.18 1 -7.985979824222703 2.033946504409595 605 -5.56 -2.59 -4.27 -.34 -1.48 1 -6.335626764257626 1.866966321771243 606 6.93 .13 .04 .32 2.03 1 2.881855746293185 -6.230064946559605 607 -4.77 -3.07 -1.51 .34 -2.13 1 -9.47372995462771 5.650530448089943 608 9.54 3.71 -2.94 -.01 .39 1 6.938139934459893 .453532778924937 609 3.88 .72 -2.23 1.46 -.16 1 -1.05813682753868 -2.051943886966359 610 .6 3.54 -.58 -.1 1.76 1 -.2466604777739863 2.453635974122106 611 6.82 1.03 3.47 -3.44 3.44 1 14.13006373515285 -2.555251514231911 612 1.99 -2.38 .68 -1.07 .8 1 -.7969297791341908 -.3940574407002404 613 3.49 1.76 1.73 -1.76 .72 1 .5468279827189715 .9019179029163964 614 .45 2.66 -1.16 1.21 -.03 1 .9523648032545907 -3.366182863817053 615 2.9 -.41 -2.15 .96 -1.28 1 .5892439640544306 3.801343710610448 616 -1.27 -.69 -2.12 2.02 -1.46 1 -1.49001583687659 .5375060083539553 617 -1.75 .09 -.26 2.16 -1.4 1 -2.242232233723338 -.9872492784416207 618 -2.36 -1.38 -1.18 2.41 -1.75 1 -3.803201280158997 .6191782687064706 619 -5.99 -3.39 -1.58 2.79 -.23 1 -10.01027367894514 .263701731990106 620 -7.59 -3.9 -.98 1.71 .24 1 -9.691976652945483 -1.255992779152897 621 11.35 3.72 -.96 -1.42 -.86 1 14.10180765195524 -7.328765598425764 622 -.28 -.34 -.18 1.46 1.52 1 -.7010521563359489 6.918695219020471 623 .74 -.36 1.57 .59 2.44 1 2.80698102953636 1.664472961319299 624 5.05 2.35 -2.14 -1.05 -1.41 1 4.812300227465119 -4.488823618117669 625 4.42 -1.54 .01 -.17 -.03 1 4.929256079524911 2.808398174936492 626 3.11 -.3 -.06 .25 .77 1 6.134441796438536 -.1262357447864098 627 -.85 -.66 -.2 .96 .72 1 -.6589440873023984 .4387329863579144 628 -6.19 -.2 .08 1.98 2.37 1 -5.232003502156303 .6944331180936318 629 3.89 .99 .54 -1.48 .37 1 3.161005632020767 -.8876966737515692 630 .79 -2.74 .01 .68 .12 1 -2.194379715301951 1.840011420252095 631 2.55 .61 .6 -.77 -.69 1 3.209782285250071 -.6554042290035031 632 2.73 .69 1.56 -1.14 1.57 1 3.744035044489593 -.2497564922306408 633 -1.76 -.8 4.16 -1.35 2.28 1 -.0112728353654932 -2.997485122381406 634 .78 .41 -1.12 .94 .93 1 -1.707135468131021 2.968343045907073 635 1.18 1.91 3.26 -1.75 .88 1 3.042648155235065 .2701289866054237 636 5.57 .57 1.34 -1.88 1.47 1 4.353588346029981 .1509605075700726 637 1.29 -.35 .28 -.96 .49 1 1.795811335142117 -1.062582825088892 638 4.03 .9 -.07 .13 1.21 1 4.731694854308732 2.455217987516834 639 1.56 -2.32 .35 .04 .39 1 -1.228710327935455 -.6101666516017357 640 2.8 2.27 1.33 -.71 -.83 1 4.940060638818191 -.8187397318572058 641 -1.2 1.33 -.4 -.47 .01 1 2.524169010641897 .1706158923222114 642 5.65 1.81 .71 -1.43 .53 1 7.810874448103843 -.7756070164821449 643 -2.71 -.03 -2.48 .85 -2.13 1 -3.497821482444668 1.726891305749435 644 3.77 2.72 -1.57 -.1 -1.32 1 1.662269053409684 .3957065823815764 645 4.18 -1.57 1.36 2.83 .89 1 3.530331927754367 -1.548639224836185 646 3.12 1.47 -.38 .77 .12 1 5.958017535781948 -1.181443691265908 647 2.81 -.44 -.2 -.57 .07 1 1.758179600545098 -.0883624242566112 648 -3.32 .56 -1.88 -4.5 -1.42 1 -3.509387301462624 1.654120853093416 649 4.65 .16 -.49 -.49 -.4 1 2.497577726394331 .7675383150229624 650 .43 -1.23 4.6 1.76 1.91 1 4.418488481502361 .7337002959205572 651 -.19 -4.21 1.62 2.85 1.09 1 -5.144931450627418 -1.300090055657543 652 2.06 -1.83 -.38 .45 -1.09 1 -.1524946883270472 3.226876440418037 653 2.61 3.04 -.6 -1.9 -1.9 1 5.056250663074426 -1.639863325627885 654 -2.04 -4.16 .04 1.48 .44 1 -3.606526297369947 -1.073779734353744 655 4.23 .3 -.76 -.91 -.65 1 2.334665259623833 -.7707598557843998 656 -1.97 -3.8 -1.68 1.28 -.62 1 -2.045957417917509 .1447530739194685 657 2.52 3.79 -1.81 -.78 -.18 1 3.921821214508064 .1178356353986567 658 2.55 -2.27 -3.37 1.69 .15 1 .2556962153253985 2.635474229565091 659 -.06 2.85 1.56 -1.52 .81 1 1.699910054766814 -3.078890081227631 660 -3.11 -.91 -3.06 1.09 -1.67 1 -9.063475876310159 .4817352432663817 661 6.13 .35 -2.16 .06 -1.62 1 7.821358748819074 .2211978151041967 662 -1.12 3.07 -.73 .16 -.54 1 1.178161237891585 1.991202305673274 663 .59 -2.99 2.13 .41 -.49 1 1.169923120498791 -1.329517653461937 664 1.36 .85 -1.9 -1.54 -.68 1 2.282959490396854 .01391606423699 665 -1.53 2.88 -1.04 1.03 -1.51 1 4.042932941219418 .3699056815049282 666 1.54 -4.5 -4.49 .31 -2.6 1 -.4668957188768061 -.1181539396678257 667 -6.04 .38 2.88 .75 1.14 1 -5.438906417704657 .1582819462867526 668 -3.07 -2.81 .73 1.66 -.5 1 -1.03380138198852 1.965128759761292 669 7.75 -2.05 -.32 1.19 .45 1 4.103701862358857 -2.397516434496359 670 .56 3.35 -1.23 -2.11 -1 1 4.884271693531828 -2.359402434240175 671 -2.17 -3 -2.07 .45 .17 1 -5.998214832502895 1.646352401779502 672 -5.77 -3.56 3.13 2.27 3 1 -9.570953046717952 -.8583285517720807 673 -.07 .87 -.03 2.44 2.09 1 -3.224477640041395 1.201286271998179 674 6.96 1.01 1.3 .58 .07 1 7.358411454974729 -2.428878818318338 601 3.4 1.53 2.74 -.55 1.43 2 -14.9038461538462 4.750675543873377 602 6.31 1.85 2.01 -.9 1.67 2 8.772742681047772 -1.547824874555269 603 2 5.03 3.12 .49 1.69 2 5.619839471199241 -2.377775945715615 604 -7.89 -.08 -2.32 1.38 -.18 2 -12.43110815111477 2.033946504409595 605 -5.56 -2.59 -4.27 -.34 -1.48 2 -6.662716462092019 1.866966321771243 606 6.93 .13 .04 .32 2.03 2 -18.01929469655549 -6.230064946559605 607 -4.77 -3.07 -1.51 .34 -2.13 2 -13.03805396069644 5.650530448089943 608 9.54 3.71 -2.94 -.01 .39 2 12.93086977856836 .453532778924937 609 3.88 .72 -2.23 1.46 -.16 2 -6.991575267138257 -2.051943886966359 610 .6 3.54 -.58 -.1 1.76 2 -2.587763505524829 2.453635974122106 611 6.82 1.03 3.47 -3.44 3.44 2 25.826417302189 -2.555251514231911 612 1.99 -2.38 .68 -1.07 .8 2 -1.953753199899981 -.3940574407002404 613 3.49 1.76 1.73 -1.76 .72 2 1.908535113442489 .9019179029163964 614 .45 2.66 -1.16 1.21 -.03 2 -2.394001810935897 -3.366182863817053 615 2.9 -.41 -2.15 .96 -1.28 2 -12.29777807612272 3.801343710610448 616 -1.27 -.69 -2.12 2.02 -1.46 2 -5.240232404411508 .5375060083539553 617 -1.75 .09 -.26 2.16 -1.4 2 -3.270575104270688 -.9872492784416207 618 -2.36 -1.38 -1.18 2.41 -1.75 2 9.105746602899874 .6191782687064706 619 -5.99 -3.39 -1.58 2.79 -.23 2 -16.62784658201427 .263701731990106 620 -7.59 -3.9 -.98 1.71 .24 2 -22.14350681319415 -1.255992779152897 621 11.35 3.72 -.96 -1.42 -.86 2 11.27604389951129 -7.328765598425764 622 -.28 -.34 -.18 1.46 1.52 2 .3072477726944403 6.918695219020471 623 .74 -.36 1.57 .59 2.44 2 12.55089107389768 1.664472961319299 624 5.05 2.35 -2.14 -1.05 -1.41 2 1.90504628247238 -4.488823618117669 625 4.42 -1.54 .01 -.17 -.03 2 5.432489451476787 2.808398174936492 626 3.11 -.3 -.06 .25 .77 2 13.8513701295092 end format %tm monthly_date
thanks
0 Response to Do the regression for only one company each and saving them to an excel/doc (ASDOC)
Post a Comment