so I am running a simple regression on products. My aim is to see if at a more aggregate level (categories of products called "atc3") a recall has a negative impact on the sales of the aggregate level I am examining. Of course his Is expected.
However, starting from an unbalanced panel dataset, I need to make it balanced before running the regression which I doo by implementing the following:
Code:
bysort idatc3 (Year): gen byte panelsize = _N sum panelsize drop if panelsize < r(max)
What I am performing is:
Code:
eststo clear eststo: xtreg y recalls_normalized L.recalls_normalized L2.recalls_normalized i.Year, fe vce(cluster idatc3) eststo: xtreg y recalls_normalized L.recalls_normalized avg_prd_sq mean_agefirm_byatc mean_agefirm_squared hhi share_generics i.Year average_age_prodbyatc3, fe vce(cluster idatc3)
Code:
. esttab, drop(*Year _cons) ------------------------------------------------------------ (1) (2) (3) y y y ------------------------------------------------------------ recalls_no~d -0.0102* -0.00787 -0.0106 (-2.16) (-1.28) (-0.95) L.recalls_~d -0.0144 -0.0102 -0.0184 (-1.88) (-1.32) (-1.82) L2.recalls~d -0.00521 -0.00920 (-0.72) (-1.02) avg_prd_sq -0.00321 -0.00585* (-1.48) (-1.98) mean_agefi~c 0.0107 0.00670 (0.61) (0.39) mean_agefi~d -0.000160 -0.000109 (-1.03) (-0.74) hhi 0.662 0.253 (1.25) (0.40) share_gene~1 0.195 -0.0413 (0.57) (-0.12) average_ag~3 0.112 0.184 (1.56) (1.94) ------------------------------------------------------------ N 1355 1598 1332 ------------------------------------------------------------ t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001
Code:
. esttab, drop(*Year _cons) ------------------------------------------------------------ (1) (2) (3) y y y ------------------------------------------------------------ recalls_no~d -0.0126* -0.0103 -0.0121 (-2.15) (-1.46) (-1.06) L.recalls_~d -0.0165* -0.0429*** -0.0198* (-2.23) (-3.97) (-2.10) L2.recalls~d -0.0157*** -0.0160*** (-3.68) (-4.33) avg_prd_sq -0.00328 -0.00587* (-1.51) (-1.99) mean_agefi~c 0.0118 0.00687 (0.68) (0.40) mean_agefi~d -0.000161 -0.000111 (-1.03) (-0.75) hhi 0.660 0.250 (1.25) (0.40) share_gene~1 0.183 -0.0329 (0.54) (-0.09) average_ag~3 0.115 0.185 (1.59) (1.95) ------------------------------------------------------------ N 1357 1601 1334 ------------------------------------------------------------ t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001
Thank you,
Federico
0 Response to Strange things
Post a Comment