As an example here, I am trying to estimate the following regression and compare when my dependent variable is non-routine vs routine (that is share of employees doing routine vs non-routine tasks). In reality, I also have 2 other dependent variables between which I want to compare results.
My question is the following: if there are some estimators which come up as significant in the first regression, but insignificant in the second (P>0.1), should I remove those from the second regression to make it more efficient, or just leave
Code:
. xtreg nonroutine using_computer lngva price_computer total_internet_access sharedegre
> e sharehigher shareother, fe vce(robust)
Fixed-effects (within) regression Number of obs = 120
Group variable: industry1 Number of groups = 10
R-sq: Obs per group:
within = 0.3276 min = 12
between = 0.4580 avg = 12.0
overall = 0.4408 max = 12
F(7,9) = 16.27
corr(u_i, Xb) = 0.5375 Prob > F = 0.0002
(Std. Err. adjusted for 10 clusters in industry1)
------------------------------------------------------------------------------------
| Robust
nonrout | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------------+----------------------------------------------------------------
using_computer | .0014271 .0004206 3.39 0.008 .0004755 .0023786
lngva | -.0193869 .0317928 -0.61 0.557 -.0913072 .0525334
price_computer | .0014037 .0009901 1.42 0.190 -.000836 .0036434
total_internet_a~s | .0041153 .0022304 1.85 0.098 -.0009303 .0091609
sharedegree | .0926562 .1112741 0.83 0.427 -.1590632 .3443756
sharehigher | -.2771514 .1359427 -2.04 0.072 -.5846752 .0303723
shareother | .1583427 .0836769 1.89 0.091 -.0309475 .3476329
_cons | .200577 .5024723 0.40 0.699 -.9360942 1.337248
-------------------+----------------------------------------------------------------
sigma_u | .1681399
sigma_e | .01373558
rho | .99337076 (fraction of variance due to u_i)
---------------------------------------------------------------------------------
VS
. xtreg routsem using_computer lngva price_computer total_internet_access sharedegre
> e sharehigher shareother, fe vce(robust)
Fixed-effects (within) regression Number of obs = 120
Group variable: industry1 Number of groups = 10
R-sq: Obs per group:
within = 0.0458 min = 12
between = 0.7000 avg = 12.0
overall = 0.6918 max = 12
F(7,9) = 9.83
corr(u_i, Xb) = 0.7868 Prob > F = 0.0014
(Std. Err. adjusted for 10 clusters in industry1)
------------------------------------------------------------------------------------
| Robust
routsem | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------------+----------------------------------------------------------------
using_computer | -.0003031 .0002802 -1.08 0.308 -.0009371 .0003308
lngva | -.0181579 .0289361 -0.63 0.546 -.083616 .0473002
price_computer | -.000896 .0002683 -3.34 0.009 -.001503 -.000289
total_internet_a~s | -.0018722 .0009078 -2.06 0.069 -.0039258 .0001813
sharedegree | -.0601111 .083996 -0.72 0.492 -.2501232 .129901
sharehigher | -.0041789 .1033247 -0.04 0.969 -.2379157 .2295579
shareother | -.0227866 .1205998 -0.19 0.854 -.2956024 .2500292
_cons | .7114436 .3188556 2.23 0.053 -.009858 1.432745
-------------------+----------------------------------------------------------------
sigma_u | .1552167
sigma_e | .01099854
rho | .99500405 (fraction of variance due to u_i)
------------------------------------------------------------------------------------
.
end of do-file
Thank you very much.
0 Response to Removing insignificant variables
Post a Comment