I have a enquiry related to my thesis work on corporate governance and innovation. My current model, after discussion with my supervisor and realising the existence of heteroskedacity, autocorrelation, and interclass correlation, uses clustered (by ID) standard errors. Since I am a beginner in Stata and the field, I was confused when the clustering of id's led to most estimates to become insignificant compared to a non-clustered robust model, but I do understand that the latter can lead to too low p-values which are in a sense "normalized" when clustering. The regression output becomes:
Ex1.
Code:
regress rdintassets d_institutional d_family d_government d_foundation d_corporate lowtech midlowtech midhightech hightech firmage lemployees salestoassets si > ze HHI5 i.year, vce(cluster id) note: d_corporate omitted because of collinearity Linear regression Number of obs = 821 F( 16, 207) = 9.83 Prob > F = 0.0000 R-squared = 0.3794 Root MSE = .04095 (Std. Err. adjusted for 208 clusters in id) --------------------------------------------------------------------------------- | Robust rdintassets | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------+---------------------------------------------------------------- d_institutional | -.0083898 .0069731 -1.20 0.230 -.0221372 .0053577 d_family | -.0013148 .0075511 -0.17 0.862 -.0162017 .0135721 d_government | -.0022413 .009686 -0.23 0.817 -.0213372 .0168545 d_foundation | .0201897 .0205137 0.98 0.326 -.0202529 .0606322 d_corporate | 0 (omitted) lowtech | .0054401 .0077778 0.70 0.485 -.0098937 .0207739 midlowtech | -.0011466 .005253 -0.22 0.827 -.0115028 .0092096 midhightech | .011555 .0058523 1.97 0.050 .0000172 .0230929 hightech | .0381415 .0060274 6.33 0.000 .0262587 .0500244 firmage | -.0017071 .0032186 -0.53 0.596 -.0080525 .0046382 lemployees | .0029649 .0019039 1.56 0.121 -.0007887 .0067186 salestoassets | -.0000491 .0000128 -3.83 0.000 -.0000744 -.0000238 size | -.0146623 .0028813 -5.09 0.000 -.0203429 -.0089818 HHI5 | -.0255175 .0133956 -1.90 0.058 -.0519268 .0008917 | year | 2014 | -.0005828 .0011025 -0.53 0.598 -.0027563 .0015908 2015 | .0011059 .002167 0.51 0.610 -.0031664 .0053781 2016 | .0030669 .0020493 1.50 0.136 -.0009733 .007107 | _cons | .1403256 .0253757 5.53 0.000 .0902977 .1903534 ---------------------------------------------------------------------------------
Code:
. regress rdintassets c.HHI5#i.(d_institutional d_family d_government d_foundation d_corporate) lowtech midlowtech midhightech hightech firmage lemployees sales > toassets size HHI5 i.year, vce(cluster id) note: 1.d_corporate#c.HHI5 omitted because of collinearity Linear regression Number of obs = 821 F( 16, 207) = 10.89 Prob > F = 0.0000 R-squared = 0.3695 Root MSE = .04128 (Std. Err. adjusted for 208 clusters in id) ---------------------------------------------------------------------------------------- | Robust rdintassets | Coef. Std. Err. t P>|t| [95% Conf. Interval] -----------------------+---------------------------------------------------------------- d_institutional#c.HHI5 | 1 | .0010219 .0177645 0.06 0.954 -.0340006 .0360444 | d_family#c.HHI5 | 1 | .0409142 .0173951 2.35 0.020 .00662 .0752085 | d_government#c.HHI5 | 1 | .0378852 .0229844 1.65 0.101 -.0074284 .0831987 | d_foundation#c.HHI5 | 1 | .0524052 .0324649 1.61 0.108 -.0115991 .1164096 | d_corporate#c.HHI5 | 1 | 0 (omitted) | lowtech | .0078691 .0072993 1.08 0.282 -.0065214 .0222596 midlowtech | .002982 .0052806 0.56 0.573 -.0074286 .0133926 midhightech | .0161474 .0054195 2.98 0.003 .0054629 .0268319 hightech | .043383 .0069076 6.28 0.000 .0297647 .0570012 firmage | -.0014441 .0034059 -0.42 0.672 -.0081587 .0052706 lemployees | .0034837 .002268 1.54 0.126 -.0009876 .007955 salestoassets | -.0000542 .0000158 -3.43 0.001 -.0000854 -.0000231 size | -.0150694 .0032153 -4.69 0.000 -.0214084 -.0087304 HHI5 | -.0435472 .0173527 -2.51 0.013 -.0777577 -.0093366 | year | 2014 | -.0005942 .0011114 -0.53 0.593 -.0027854 .001597 2015 | .0011665 .00217 0.54 0.591 -.0031117 .0054447 2016 | .0031284 .0020456 1.53 0.128 -.0009045 .0071613 | _cons | .1296923 .024291 5.34 0.000 .0818029 .1775817 ----------------------------------------------------------------------------------------
Thank you for considering this lengthy post!
0 Response to Interaction terms and statistical significance
Post a Comment