I have a enquiry related to my thesis work on corporate governance and innovation. My current model, after discussion with my supervisor and realising the existence of heteroskedacity, autocorrelation, and interclass correlation, uses clustered (by ID) standard errors. Since I am a beginner in Stata and the field, I was confused when the clustering of id's led to most estimates to become insignificant compared to a non-clustered robust model, but I do understand that the latter can lead to too low p-values which are in a sense "normalized" when clustering. The regression output becomes:
Ex1.
Code:
regress rdintassets d_institutional d_family d_government d_foundation d_corporate lowtech midlowtech midhightech hightech firmage lemployees salestoassets si
> ze HHI5 i.year, vce(cluster id)
note: d_corporate omitted because of collinearity
Linear regression Number of obs = 821
F( 16, 207) = 9.83
Prob > F = 0.0000
R-squared = 0.3794
Root MSE = .04095
(Std. Err. adjusted for 208 clusters in id)
---------------------------------------------------------------------------------
| Robust
rdintassets | Coef. Std. Err. t P>|t| [95% Conf. Interval]
----------------+----------------------------------------------------------------
d_institutional | -.0083898 .0069731 -1.20 0.230 -.0221372 .0053577
d_family | -.0013148 .0075511 -0.17 0.862 -.0162017 .0135721
d_government | -.0022413 .009686 -0.23 0.817 -.0213372 .0168545
d_foundation | .0201897 .0205137 0.98 0.326 -.0202529 .0606322
d_corporate | 0 (omitted)
lowtech | .0054401 .0077778 0.70 0.485 -.0098937 .0207739
midlowtech | -.0011466 .005253 -0.22 0.827 -.0115028 .0092096
midhightech | .011555 .0058523 1.97 0.050 .0000172 .0230929
hightech | .0381415 .0060274 6.33 0.000 .0262587 .0500244
firmage | -.0017071 .0032186 -0.53 0.596 -.0080525 .0046382
lemployees | .0029649 .0019039 1.56 0.121 -.0007887 .0067186
salestoassets | -.0000491 .0000128 -3.83 0.000 -.0000744 -.0000238
size | -.0146623 .0028813 -5.09 0.000 -.0203429 -.0089818
HHI5 | -.0255175 .0133956 -1.90 0.058 -.0519268 .0008917
|
year |
2014 | -.0005828 .0011025 -0.53 0.598 -.0027563 .0015908
2015 | .0011059 .002167 0.51 0.610 -.0031664 .0053781
2016 | .0030669 .0020493 1.50 0.136 -.0009733 .007107
|
_cons | .1403256 .0253757 5.53 0.000 .0902977 .1903534
---------------------------------------------------------------------------------
Code:
. regress rdintassets c.HHI5#i.(d_institutional d_family d_government d_foundation d_corporate) lowtech midlowtech midhightech hightech firmage lemployees sales
> toassets size HHI5 i.year, vce(cluster id)
note: 1.d_corporate#c.HHI5 omitted because of collinearity
Linear regression Number of obs = 821
F( 16, 207) = 10.89
Prob > F = 0.0000
R-squared = 0.3695
Root MSE = .04128
(Std. Err. adjusted for 208 clusters in id)
----------------------------------------------------------------------------------------
| Robust
rdintassets | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------------------+----------------------------------------------------------------
d_institutional#c.HHI5 |
1 | .0010219 .0177645 0.06 0.954 -.0340006 .0360444
|
d_family#c.HHI5 |
1 | .0409142 .0173951 2.35 0.020 .00662 .0752085
|
d_government#c.HHI5 |
1 | .0378852 .0229844 1.65 0.101 -.0074284 .0831987
|
d_foundation#c.HHI5 |
1 | .0524052 .0324649 1.61 0.108 -.0115991 .1164096
|
d_corporate#c.HHI5 |
1 | 0 (omitted)
|
lowtech | .0078691 .0072993 1.08 0.282 -.0065214 .0222596
midlowtech | .002982 .0052806 0.56 0.573 -.0074286 .0133926
midhightech | .0161474 .0054195 2.98 0.003 .0054629 .0268319
hightech | .043383 .0069076 6.28 0.000 .0297647 .0570012
firmage | -.0014441 .0034059 -0.42 0.672 -.0081587 .0052706
lemployees | .0034837 .002268 1.54 0.126 -.0009876 .007955
salestoassets | -.0000542 .0000158 -3.43 0.001 -.0000854 -.0000231
size | -.0150694 .0032153 -4.69 0.000 -.0214084 -.0087304
HHI5 | -.0435472 .0173527 -2.51 0.013 -.0777577 -.0093366
|
year |
2014 | -.0005942 .0011114 -0.53 0.593 -.0027854 .001597
2015 | .0011665 .00217 0.54 0.591 -.0031117 .0054447
2016 | .0031284 .0020456 1.53 0.128 -.0009045 .0071613
|
_cons | .1296923 .024291 5.34 0.000 .0818029 .1775817
----------------------------------------------------------------------------------------
Thank you for considering this lengthy post!
0 Response to Interaction terms and statistical significance
Post a Comment