I struggle with interpreting my results from multilevel linear regressions, using restricted maximum likelihood and Kenward-Roger correction. I use Stata 15.0 on a Mac (version 10.14), and I hope I’m using the Code-function right.
My problem is that I do not know how to interpret the significance of the coefficients in my multilevel outputs. I’m doing my master thesis, so I will report significance at both the 0.1-, 0.05-, 0.01- and 0.001-level in my regression tables.
For example, from reading off P>|t| in the output below, I immediately thought that x1-x3 are statistically significant (x1 at the 0.1-level, x2 at the 0.01-level, x3 at the 0.001-level). However, is that the correct interpretation? The confusion arise as I do not know how to calculate the critical t-value, so that I can compare t from the output to the critical t-value. I tried using this calculatur (http://www.ttable.org/student-t-value-calculator.html), plotting in df=6, but I'm not sure this yields the right value. The critical value for a two-tail test with significance level 0.01 is calculated to be +/-3.71. However, if x2 is significant at the 0.01-level (which I though from reading its P>|t|), why is the t-value only 3.43, which yields a significance at the 0.05-level if the critical t-value is 3.71? Is the critical t-value in fact something else, or is my interpretation of P>|t| wrong?
Code:
mixed CHILDREN x1 x2 x3 || COUNTRY2:, reml dfmethod(kroger)
Code:
Mixed-effects REML regression Number of obs = 3,245 Group variable: COUNTRY2 Number of groups = 10 Obs per group: min = 108 avg = 324.5 max = 466 DF method: Kenward-Roger DF: min = 16.07 avg = 1,561.11 max = 3,240.03 F(3, 98.23) = 21.91 Log restricted-likelihood = -4836.0572 Prob > F = 0.0000 -------------------------------------------------------------------------------- CHILDREN | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------------+---------------------------------------------------------------- x1 | .2339834 .1167206 2.00 0.058 -.0091296 .4770963 x2 | .133747 .0389608 3.43 0.001 .0573566 .2101373 x3 | .0837528 .0124587 6.72 0.000 .0593243 .1081814 _cons | .5332078 .2389675 2.23 0.040 .0268024 1.039613 -------------------------------------------------------------------------------- ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ COUNTRY2: Identity | var(_cons) | .1383108 .0711551 .0504601 .3791085 -----------------------------+------------------------------------------------ var(Residual) | 1.136198 .0282628 1.082133 1.192965 ------------------------------------------------------------------------------ LR test vs. linear model: chibar2(01) = 124.99 Prob >= chibar2 = 0.0000 . estat ic Akaike's information criterion and Bayesian information criterion ----------------------------------------------------------------------------- Model | Obs ll(null) ll(model) df AIC BIC -------------+--------------------------------------------------------------- . | 3,245 . -4836.057 6 9684.114 9720.624 -----------------------------------------------------------------------------
All help is very much appreciated.
Kind regards,
Frøydis Jensen
0 Response to Interpreting significance - HLM using REML and Kenward-Roger-corr.
Post a Comment