I am currently using STATA 15 and I am trying to run a probit model of an indicator variable "Home Bias" (1 if person owns stock in domestic country/0 if not) on three indicator variables for whether an individual is in a specific generation (MG=millenial, GX=gen x, BB=baby boomer) and several controls and survey year controls. I run this model using sampling weights and robust standard errors. (refer to ANALYSIS WEIGHTS for more info on the weights used)
The model does not converge if I either include the sampling weights or, if sampling weights are included, I include all three generational indicators.
Code:
probit HB MG GX BB age education white male income_xtile networth_xtile yrx* [pw=wgt] if age<=36 , vce(robust)
Home Bias | MG | GX | BB |
0 | 255 | 414 | 732 |
1 | 1354 | 2916 | 983 |
Total | 1609 | 3330 | 1715 |
Additionally from similar threads, I used the -iter()- option and found that BB may be the problematic variable.
Code:
. probit HB MG GX BB age education white male income_xtile networth_xtile yrx* [pw=wgt] if age<=36 , iter(10) vce(robust) note: yrx1 != 0 predicts failure perfectly yrx1 dropped and 571 obs not used note: yrx10 omitted because of collinearity Iteration 0: log pseudolikelihood = -10994329 Iteration 1: log pseudolikelihood = -9995004.5 Iteration 2: log pseudolikelihood = -9962652.9 Iteration 3: log pseudolikelihood = -9962035.8 Iteration 4: log pseudolikelihood = -9961948.4 Iteration 5: log pseudolikelihood = -9961932.9 Iteration 6: log pseudolikelihood = -9961930.8 Iteration 7: log pseudolikelihood = -9961930.4 Iteration 8: log pseudolikelihood = -9961930.3 Iteration 9: log pseudolikelihood = -9961930.3 Iteration 10: log pseudolikelihood = -9961930.3 convergence not achieved Probit regression Number of obs = 6,103 Wald chi2(14) = . Prob > chi2 = . Log pseudolikelihood = -9961930.3 Pseudo R2 = 0.0939 -------------------------------------------------------------------------------- | Robust HB | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------------+---------------------------------------------------------------- MG | -4.980324 .3090391 -16.12 0.000 -5.58603 -4.374619 GX | -5.266788 .3430286 -15.35 0.000 -5.939112 -4.594464 BB | -5.707422 . . . . . age | .0179968 .0089211 2.02 0.044 .0005117 .035482 education | -.1401491 .0152256 -9.20 0.000 -.1699908 -.1103074 white | .2162418 .0593501 3.64 0.000 .0999177 .3325659 male | -.3093737 .0855674 -3.62 0.000 -.4770827 -.1416647 income_xtile | .023847 .0030531 7.81 0.000 .017863 .029831 networth_xtile | -.0305111 .0029032 -10.51 0.000 -.0362013 -.024821 yrx1 | 0 (omitted) yrx2 | 1.811163 .1970285 9.19 0.000 1.424994 2.197332 yrx3 | 1.400022 .1790625 7.82 0.000 1.049066 1.750978 yrx4 | 1.295315 .1721532 7.52 0.000 .9579008 1.632729 yrx5 | 1.498705 .1551553 9.66 0.000 1.194606 1.802804 yrx6 | 1.108657 .147112 7.54 0.000 .8203223 1.396991 yrx7 | 1.05504 .1383681 7.62 0.000 .783844 1.326237 yrx8 | .7401583 .1168842 6.33 0.000 .5110695 .9692471 yrx9 | .356723 .1095997 3.25 0.001 .1419115 .5715345 yrx10 | 0 (omitted) _cons | 7.084225 .5015207 14.13 0.000 6.101262 8.067187 -------------------------------------------------------------------------------- Note: 0 failures and 5 successes completely determined. Warning: convergence not achieved
year | MG | GX | BB |
1989 | 0 | 10 | 561 |
1992 | 0 | 111 | 563 |
1995 | 0 | 315 | 361 |
1998 | 0 | 498 | 230 |
2001 | 40 | 859 | 0 |
2004 | 75 | 557 | 0 |
2007 | 190 | 440 | 0 |
2010 | 335 | 350 | 0 |
2013 | 360 | 190 | 0 |
Would it be possible for someone to assist me in determining why this model will not converge and whether there is a possible solution to get around this issue?
Thanks in advance!
0 Response to Probit model does not converge
Post a Comment