The CF approach is an alternative to xtivreg, fe estimation. Suppose X is an endogenous independent variable. In the CF approach, we first run
xtreg X Z C1 C2, fe, where
C1 and C2 are controls from the first stage and Z is an instrument); then predict residuals with
predict CF, resid
and then insert CF in the first stage:
xtreg Y X C1 C2 CF, fe
In this case, coefficients for X, C1, and C2 should be the same in both xtreg Y X C1 C2 CF, fe and xtivreg Y C1 C2 (X = Z), fe, while standard errors will differ if we do not adjust the ones from xtreg, fe via bootsrapping (I did not use bootstrapping in order not to create additional confusion).
Indeed, here are the results of xtreg, fe and xtivreg, fe I derived using the nlswork data:
xtreg, fe (errors not bootstrapped)
Code:
webuse nlswork, clear quietly xtreg tenure union south age c.age#c.age not_smsa, fe predict cf, resid xtreg ln_w tenure age c.age#c.age not_smsa cf, fe Fixed-effects (within) regression Number of obs = 19,007 Group variable: idcode Number of groups = 4,134 R-sq: Obs per group: within = 0.1328 min = 1 between = 0.2365 avg = 4.6 overall = 0.2073 max = 12 F(5,14868) = 455.53 corr(u_i, Xb) = 0.2033 Prob > F = 0.0000 ------------------------------------------------------------------------------ ln_wage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- tenure | .2403531 .0151385 15.88 0.000 .2106797 .2700264 age | .0118437 .0036499 3.24 0.001 .0046894 .018998 | c.age#c.age | -.0012145 .0000798 -15.22 0.000 -.0013709 -.001058 | not_smsa | -.0167178 .0137527 -1.22 0.224 -.0436748 .0102393 cf | -.2227325 .0151602 -14.69 0.000 -.2524484 -.1930167 _cons | 1.678287 .0659452 25.45 0.000 1.549027 1.807548 -------------+---------------------------------------------------------------- sigma_u | .38999138 sigma_e | .25552281 rho | .69964877 (fraction of variance due to u_i) ------------------------------------------------------------------------------ F test that all u_i=0: F(4133, 14868) = 8.30 Prob > F = 0.0000
Code:
xtivreg ln_w age c.age#c.age not_smsa (tenure = union south), fe Fixed-effects (within) IV regression Number of obs = 19,007 Group variable: idcode Number of groups = 4,134 R-sq: Obs per group: within = . min = 1 between = 0.1304 avg = 4.6 overall = 0.0897 max = 12 Wald chi2(4) = 147926.58 corr(u_i, Xb) = -0.6843 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ ln_wage | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- tenure | .2403531 .0373419 6.44 0.000 .1671643 .3135419 age | .0118437 .0090032 1.32 0.188 -.0058023 .0294897 | c.age#c.age | -.0012145 .0001968 -6.17 0.000 -.0016003 -.0008286 | not_smsa | -.0167178 .0339236 -0.49 0.622 -.0832069 .0497713 _cons | 1.678287 .1626657 10.32 0.000 1.359468 1.997106 -------------+---------------------------------------------------------------- sigma_u | .70661941 sigma_e | .63029359 rho | .55690561 (fraction of variance due to u_i) ------------------------------------------------------------------------------ F test that all u_i=0: F(4133,14869) = 1.44 Prob > F = 0.0000 ------------------------------------------------------------------------------ Instrumented: tenure Instruments: age c.age#c.age not_smsa union south ------------------------------------------------------------------------------
However, my question is about which sample in the first stage it is correct to use once our explanatory variables are lagged?
Fixed-effects IV estimator:
Code:
xtivreg ln_w l.age cl.age#cl.age l.not_smsa (l.tenure = l.union l.south), fe Fixed-effects (within) IV regression Number of obs = 7,500 Group variable: idcode Number of groups = 3,294 R-sq: Obs per group: within = . min = 1 between = 0.0685 avg = 2.3 overall = 0.0571 max = 6 Wald chi2(4) = 80781.56 corr(u_i, Xb) = -0.5474 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ ln_wage | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- tenure | L1. | .1755435 .0389611 4.51 0.000 .0991811 .2519059 | age | L1. | .0106753 .0134104 0.80 0.426 -.0156085 .0369592 | cL.age#| cL.age | -.0008867 .0002305 -3.85 0.000 -.0013384 -.0004351 | not_smsa | L1. | -.0452809 .0509685 -0.89 0.374 -.1451773 .0546154 | _cons | 1.671945 .2302329 7.26 0.000 1.220697 2.123194 -------------+---------------------------------------------------------------- sigma_u | .59050356 sigma_e | .54146412 rho | .54324114 (fraction of variance due to u_i) ------------------------------------------------------------------------------ F test that all u_i=0: F(3293,4202) = 1.08 Prob > F = 0.0089 ------------------------------------------------------------------------------ Instrumented: L.tenure Instruments: L.age cL.age#cL.age L.not_smsa L.union L.south ------------------------------------------------------------------------------
Code:
quietly xtreg l.tenure l.union l.south l.age cl.age#cl.age l.not_smsa, fe predict cf, resid xtreg ln_w l.tenure l.age cl.age#cl.age l.not_smsa cf, fe Fixed-effects (within) regression Number of obs = 7,500 Group variable: idcode Number of groups = 3,294 R-sq: Obs per group: within = 0.1351 min = 1 between = 0.1783 avg = 2.3 overall = 0.1770 max = 6 F(5,4201) = 131.21 corr(u_i, Xb) = 0.1436 Prob > F = 0.0000 ------------------------------------------------------------------------------ ln_wage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- tenure | L1. | .1755435 .0205221 8.55 0.000 .1353094 .2157776 | age | L1. | .0106753 .0070637 1.51 0.131 -.0031732 .0245239 | cL.age#| cL.age | -.0008867 .0001214 -7.30 0.000 -.0011247 -.0006488 | not_smsa | L1. | -.0452809 .0268467 -1.69 0.092 -.0979147 .0073528 | cf | -.1641325 .020582 -7.97 0.000 -.204484 -.1237809 _cons | 1.671945 .1212711 13.79 0.000 1.43419 1.909701 -------------+---------------------------------------------------------------- sigma_u | .41441731 sigma_e | .2852065 rho | .67859444 (fraction of variance due to u_i) ------------------------------------------------------------------------------ F test that all u_i=0: F(3293, 4201) = 3.72 Prob > F = 0.0000
Code:
quietly xtreg tenure union south age c.age#c.age not_smsa, fe predict cf, resid xtreg ln_w l.tenure l.age cl.age#cl.age l.not_smsa l.cf, fe Fixed-effects (within) regression Number of obs = 7,500 Group variable: idcode Number of groups = 3,294 R-sq: Obs per group: within = 0.1353 min = 1 between = 0.1785 avg = 2.3 overall = 0.1767 max = 6 F(5,4201) = 131.45 corr(u_i, Xb) = 0.1454 Prob > F = 0.0000 ------------------------------------------------------------------------------ ln_wage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- tenure | L1. | .2566965 .0304213 8.44 0.000 .1970547 .3163383 | age | L1. | .0144529 .006859 2.11 0.035 .0010056 .0279002 | cL.age#| cL.age | -.0013382 .0001577 -8.48 0.000 -.0016475 -.001029 | not_smsa | L1. | -.0346281 .027326 -1.27 0.205 -.0882015 .0189453 | cf | L1. | -.2452925 .0305005 -8.04 0.000 -.3050896 -.1854954 | _cons | 1.710315 .1238945 13.80 0.000 1.467417 1.953214 -------------+---------------------------------------------------------------- sigma_u | .41454272 sigma_e | .28517027 rho | .67878182 (fraction of variance due to u_i) ------------------------------------------------------------------------------ F test that all u_i=0: F(3293, 4201) = 3.72 Prob > F = 0.0000
Code:
quietly xtreg tenure union south age c.age#c.age not_smsa, fe predict cf, resid xtreg ln_w l.tenure l.age cl.age#cl.age l.not_smsa l.cf, fe
Code:
quietly xtreg l.tenure l.union l.south l.age cl.age#cl.age l.not_smsa, fe predict cf, resid xtreg ln_w l.tenure l.age cl.age#cl.age l.not_smsa cf, fe
0 Response to Sample selection in the control function approach
Post a Comment