Hi,

can anyone help me on how to deal with the problem of missing F-test value?

Code:
Multiple-imputation estimates                   Imputations       =         20
Tobit regression                                Number of obs     =      1,985
                                                Average RVI       =     0.0000
                                                Largest FMI       =     0.0000
                                                DF:     min       =   7.49e+65
                                                        avg       =   7.49e+65
DF adjustment:   Large sample                           max       =          .
                                                F(  17,      .)   =          .
Within VCE type:       Robust                   Prob > F          =          .

                             (Within VCE adjusted for 183 clusters in Municipality)
-----------------------------------------------------------------------------------
       lnEffectMW |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
------------------+----------------------------------------------------------------
         lnIncome |   .1713888   1.330814     0.13   0.898    -2.436958    2.779736
           lnArea |   -10.9632   18.99225    -0.58   0.564    -48.18732    26.26092
            lnPop |   -11.0056   18.96456    -0.58   0.562    -48.17546    26.16425
        lnAreaPop |   11.16809   18.90128     0.59   0.555    -25.87774    48.21393
       ln_UnempL5 |  -.1357295   .1727421    -0.79   0.432    -.4742978    .2028388
    RedBlockParty |   .0112927   .1538175     0.07   0.941    -.2901841    .3127694
        lnAgeGrp1 |  -1.618337   .7806243    -2.07   0.038    -3.148332   -.0883411
        lnAgeGrp2 |   1.118265   .5289295     2.11   0.034     .0815821    2.154947
        lnAgeGrp3 |   -.306101   .9195161    -0.33   0.739     -2.10832    1.496117
        lnAgeGrp4 |  -.2789467   1.115882    -0.25   0.803    -2.466035    1.908141
        lnAgeGrp5 |   .4830414   .8223909     0.59   0.557    -1.128815    2.094898
        lnAgeGrp6 |  -1.380766   .8250489    -1.67   0.094    -2.997832    .2362999
        lnAgeGrp7 |   .0544808   .8709994     0.06   0.950    -1.652647    1.761608
        lnAgeGrp8 |    1.59106   .5788295     2.75   0.006     .4565748    2.725545
               MM |  -.2155857   .4176816    -0.52   0.606    -1.034227    .6030553
               CM |   .4188016   .1845671     2.27   0.023     .0570567    .7805466
             Year |   .1478967   .0588115     2.51   0.012     .0326283    .2631652
            _cons |  -293.4682   118.6287    -2.47   0.013    -525.9762   -60.96013
------------------+----------------------------------------------------------------
 var(e.lnEffectMW)|    1.34662   .0945428                      1.173504    1.545275
-----------------------------------------------------------------------------------
Code:
Refining starting values:

Grid node 0:   log likelihood =  -3110.715

Fitting full model:

Iteration 0:   log pseudolikelihood =  -3110.715  
Iteration 1:   log pseudolikelihood = -3110.6653  
Iteration 2:   log pseudolikelihood = -3110.6653  

Tobit regression                                Number of obs     =      1,985
                                                   Uncensored     =      1,978
Limits: lower = 0                                  Left-censored  =          7
        upper = +inf                               Right-censored =          0

                                                Wald chi2(17)     =     308.92
Log pseudolikelihood = -3110.6653               Prob > chi2       =     0.0000
                              (Std. Err. adjusted for 183 clusters in Municipality)
-----------------------------------------------------------------------------------
                  |               Robust
       lnEffectMW |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
------------------+----------------------------------------------------------------
         lnIncome |   .1713888   1.330814     0.13   0.898    -2.436958    2.779736
           lnArea |   -10.9632   18.99225    -0.58   0.564    -48.18732    26.26092
            lnPop |   -11.0056   18.96456    -0.58   0.562    -48.17546    26.16425
        lnAreaPop |   11.16809   18.90128     0.59   0.555    -25.87774    48.21393
       ln_UnempL5 |  -.1357295   .1727421    -0.79   0.432    -.4742978    .2028388
    RedBlockParty |   .0112927   .1538175     0.07   0.941    -.2901841    .3127694
        lnAgeGrp1 |  -1.618337   .7806243    -2.07   0.038    -3.148332   -.0883411
        lnAgeGrp2 |   1.118265   .5289295     2.11   0.034     .0815821    2.154947
        lnAgeGrp3 |   -.306101   .9195161    -0.33   0.739     -2.10832    1.496117
        lnAgeGrp4 |  -.2789467   1.115882    -0.25   0.803    -2.466035    1.908141
        lnAgeGrp5 |   .4830414   .8223909     0.59   0.557    -1.128815    2.094898
        lnAgeGrp6 |  -1.380766   .8250489    -1.67   0.094    -2.997832    .2362999
        lnAgeGrp7 |   .0544808   .8709994     0.06   0.950    -1.652647    1.761608
        lnAgeGrp8 |    1.59106   .5788295     2.75   0.006     .4565748    2.725545
               MM |  -.2155857   .4176816    -0.52   0.606    -1.034227    .6030552
               CM |   .4188016   .1845671     2.27   0.023     .0570567    .7805466
             Year |   .1478967   .0588115     2.51   0.012     .0326283    .2631652
            _cons |  -293.4682   118.6287    -2.47   0.013    -525.9762   -60.96013
------------------+----------------------------------------------------------------
 var(e.lnEffectMW)|    1.34662   .0945428                      1.173504    1.545275
-----------------------------------------------------------------------------------
Thanks