Dear Stata Users,
I am attempting to apply the two step Heckman model, with a Tobit regression as first stage instead of a probit model.
I am proceeding in this way:
a) Tobit model
b) estimation of inverse Mill's ratio (IMR)
command:
predict phat, xb gen mills = exp(-.5*phat2)/(sqrt(2*_pi)*normprob(phat)) c) estimation of a OLS model, including the IMR as additional indep. variable. My problem is that the OLS model (c) omits the IMR because of multicollinearity. # . reg SHROA_5w_100 RepTrak Td_TE_100 logTA Int_TA_100 Bsize IndBoard_100 Y1 Y2 Y3 Y4 Y5 Sector1 Sector2 Sector3 Sector4 Sector5 Country1-Country18 GDPperCapita millsTobit note: Y5 omitted because of collinearity note: Sector2 omitted because of collinearity note: Country1 omitted because of collinearity note: Country17 omitted because of collinearity note: millsTobit omitted because of collinearity Source | SS df MS Number of obs = 372 -------------+---------------------------------- F(31, 340) = 2.20 Model | .148992991 31 .004806226 Prob > F = 0.0004 Residual | .741759968 340 .002181647 R-squared = 0.1673 -------------+---------------------------------- Adj R-squared = 0.0913 Total | .890752959 371 .002400951 Root MSE = .04671 ------------------------------------------------------------------------------ SHROA_5w_100 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- RepTrak | .0034099 .001144 2.98 0.003 .0011597 .0056602 Td_TE_100 | .0002304 .0006909 0.33 0.739 -.0011286 .0015894 logTA | -.0004981 .0026906 -0.19 0.853 -.0057905 .0047943 Int_TA_100 | -.0877178 .0709171 -1.24 0.217 -.2272094 .0517738 Bsize | .0018275 .0011427 1.60 0.111 -.0004203 .0040752 IndBoard_100 | -.0083301 .0130468 -0.64 0.524 -.0339926 .0173324 Y1 | .0159247 .0116517 1.37 0.173 -.0069937 .0388432 Y2 | .0227221 .0110277 2.06 0.040 .001031 .0444133 Y3 | .0134447 .0107067 1.26 0.210 -.0076151 .0345045 Y4 | .0148655 .0097597 1.52 0.129 -.0043316 .0340625 Y5 | 0 (omitted) Sector1 | -.0102441 .0089178 -1.15 0.251 -.0277851 .0072969 Sector2 | 0 (omitted) Sector3 | -.0251224 .0119066 -2.11 0.036 -.0485423 -.0017025 Sector4 | -.0134131 .0096315 -1.39 0.165 -.0323578 .0055317 Sector5 | -.0138872 .0095445 -1.46 0.147 -.0326609 .0048864 Country1 | 0 (omitted) Country2 | -.0610968 .0561138 -1.09 0.277 -.1714708 .0492771 Country3 | .0409602 .0433195 0.95 0.345 -.0442478 .1261682 Country4 | -.0117026 .0440055 -0.27 0.790 -.0982599 .0748547 Country5 | .004747 .043461 0.11 0.913 -.0807393 .0902334 Country6 | -.045664 .048471 -0.94 0.347 -.1410048 .0496767 Country7 | -.0395118 .0453174 -0.87 0.384 -.1286495 .0496259 Country8 | -.0332612 .0453622 -0.73 0.464 -.1224872 .0559648 Country9 | -.023308 .0556034 -0.42 0.675 -.132678 .0860621 Country10 | -.1146152 .0853866 -1.34 0.180 -.2825678 .0533373 Country11 | -.0867431 .0551996 -1.57 0.117 -.1953188 .0218326 Country12 | -.0452769 .0468803 -0.97 0.335 -.1374888 .046935 Country13 | -.0280531 .0576583 -0.49 0.627 -.141465 .0853588 Country14 | .0182435 .0413212 0.44 0.659 -.0630338 .0995208 Country15 | -.0219888 .0383947 -0.57 0.567 -.0975098 .0535321 Country16 | -.0157429 .047691 -0.33 0.742 -.1095494 .0780636 Country17 | 0 (omitted) Country18 | .0167567 .0355765 0.47 0.638 -.053221 .0867345 GDPperCapita | -1.95e-06 1.09e-06 -1.79 0.075 -4.10e-06 1.96e-07 millsTobit | 0 (omitted) _cons | -.0921997 .1135825 -0.81 0.418 -.3156125 .1312131 ------------------------------------------------------------------------------ ##
I have attempted to run a model with IMR as unique indep. v., but i get the same result:
#. reg SHROA_5w_100 millsTobit
note: millsTobit omitted because of collinearity
Source | SS df MS Number of obs = 454
-------------+---------------------------------- F(0, 453) = 0.00
Model | 0 0 . Prob > F = .
Residual | 1.04345408 453 .002303431 R-squared = 0.0000
-------------+---------------------------------- Adj R-squared = 0.0000
Total | 1.04345408 453 .002303431 Root MSE = .04799
------------------------------------------------------------------------------
SHROA_5w_100 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
millsTobit | 0 (omitted)
_cons | .0481006 .0022525 21.35 0.000 .043674 .0525272
------------------------------------------------------------------------------
###
Any suggestions would be really appreciated.
Thank you in advance
Related Posts with Heckman two step model
Collapse by what?Hi everyone, I have the following database which I describe quickly. Basically it is a escalation o…
Compound double quotes for single quotesDear Statalisters, I'm wondering if there is a possibility like compound double quotes for single q…
Hausman Test producing different resultsI am using panel data and trying to decide between the fixed and random effects models to use. When…
Multiple imputation when there is a certain group that did not answer a certain questionHello Statalist, I have a general question about multiple imputations method in Stata. There are mu…
Difference in Difference with multiple time periodsDear All, I am working with a cross-sectional pooled dataset with 8,586 individual-level observatio…
Subscribe to:
Post Comments (Atom)
0 Response to Heckman two step model
Post a Comment