I'm using STATA 15.
My problem is that I see different results when I run the same random-intercept only mixed effects model, but where I run one (i) using the "eststo", prefix and the other (ii) without any prefix, ie "mixed absenty_p bmim || grade: " only. My code is below. Please let me know if I can clarify, thank you so much
Q: Would someone have an idea why the models report different fixed-effects and random-effects results?
Code:
. mixed absenty_p bmim || grade:
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = 3895.8906
Iteration 1: log likelihood = 3895.8906
Computing standard errors:
Mixed-effects ML regression Number of obs = 2,676
Group variable: grade Number of groups = 9
Obs per group:
min = 225
avg = 297.3
max = 343
Wald chi2(1) = 0.08
Log likelihood = 3895.8906 Prob > chi2 = 0.7762
------------------------------------------------------------------------------
absenty_p | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
bmim | .0000584 .0002054 0.28 0.776 -.0003441 .0004609
_cons | .0564974 .0050627 11.16 0.000 .0465748 .0664201
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
grade: Identity |
var(_cons) | .0000597 .0000336 .0000198 .00018
-----------------------------+------------------------------------------------
var(Residual) | .0031639 .0000866 .0029986 .0033384
------------------------------------------------------------------------------
LR test vs. linear model: chibar2(01) = 29.82 Prob >= chibar2 = 0.0000
. predict randint0, reffects
(570 missing values generated)
. graph hbar (mean) randint0, over(grade) ytitle("Random Intercepts by Grade")
. eststo: mixed absenty_p bmim || grade:
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log restricted-likelihood = 3883.39
Iteration 1: log restricted-likelihood = 3883.39
Computing standard errors:
Mixed-effects REML regression Number of obs = 2,676
Group variable: grade Number of groups = 9
Obs per group:
min = 225
avg = 297.3
max = 343
Wald chi2(1) = 0.11
Log restricted-likelihood = 3883.39 Prob > chi2 = 0.7432
------------------------------------------------------------------------------
absenty_p | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
bmim | .0000674 .0002057 0.33 0.743 -.0003357 .0004705
_cons | .0563113 .0051681 10.90 0.000 .046182 .0664406
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
grade: Identity |
var(_cons) | .0000689 .0000403 .0000219 .0002167
-----------------------------+------------------------------------------------
var(Residual) | .0031651 .0000867 .0029996 .0033396
------------------------------------------------------------------------------
LR test vs. linear model: chibar2(01) = 31.86 Prob >= chibar2 = 0.0000
(est5 stored)
0 Response to Why different FE and RE results for the same model ? One uses eststo
Post a Comment