I'm trying to study whether the decline in birth rates had an impact on GDP on a national level. I have therefore gathered data on birth rates and GDP for 169 countries from 1855 to 2018, with an example below:
Code:
input str34 country int year double gdppc float log_gdp double pop float post_treat "Afghanistan" 1981 1144 7.042286 13676 0 "Afghanistan" 1982 1270 7.146772 12583 0 "Afghanistan" 1983 1347 7.205635 12439 0 "Afghanistan" 1984 1337 7.198184 12769 0 "Afghanistan" 1985 1304 7.173192 13120 0 "Afghanistan" 1986 1344 7.203405 13126 0 "Afghanistan" 1987 1211 7.099202 13056 0 "Afghanistan" 1988 1101 7.003974 13169 0 "Afghanistan" 1989 999 6.906755 13503 0 "Afghanistan" 1990 963 6.870053 13568 0 "Afghanistan" 1991 881.1704 6.781251 13672 0 "Afghanistan" 1992 843.8753 6.738005 15023 0 "Afghanistan" 1993 578.4027 6.360271 17003 0 "Afghanistan" 1994 428.4246 6.060115 18486 0 "Afghanistan" 1995 632.9404 6.450376 19445 0 "Afghanistan" 1996 600.1753 6.397222 20111 0 "Afghanistan" 1997 570.5981 6.346685 20769 0 "Afghanistan" 1998 545.0388 6.300857 21452 0 "Afghanistan" 1999 518.6579 6.251245 22206 0 "Afghanistan" 2000 502.3727 6.219342 22461 1 "Afghanistan" 2001 489.682 6.193756 22507 1 "Afghanistan" 2002 796.8166 6.680624 23600 1 "Afghanistan" 2003 842.8052 6.736736 25005 1 "Afghanistan" 2004 869.0393 6.767388 25698 1 "Afghanistan" 2005 964.4081 6.871514 26335 1 "Afghanistan" 2006 1057.0966 6.963281 27154 1 "Afghanistan" 2007 1259.9967 7.138865 27387 1 "Afghanistan" 2008 1319.6074 7.18509 27706 1 "Afghanistan" 2009 1557.3206 7.350722 28484 1 "Afghanistan" 2010 1627.6716 7.394906 29121 1 "Afghanistan" 2011 1792 7.491087 29758 1 "Afghanistan" 2012 1945 7.573017 30420 1 "Afghanistan" 2013 2025 7.613325 31108 1P "Afghanistan" 2014 2022 7.611843 31823 1 "Afghanistan" 2015 1928 7.564239 32564 1 "Afghanistan" 2016 1929 7.564757 33332 1 "Afghanistan" 2017 2014.7453 7.608248 34124.811 1 "Afghanistan" 2018 1934.555 7.567633 34940.837 1 "Angola" 1965 2544 7.841493 5134.818 0 "Angola" 1966 2646 7.880805 5201.25 0 "Angola" 1967 2753 7.920446 5247.469 0 "Angola" 1968 2665 7.887959 5350.384 0 "Angola" 1969 2695 7.899154 5471.641 0 "Angola" 1970 2818 7.943783 5605.626 0 "Angola" 1971 2754 7.92081 5752.957 0 "Angola" 1972 2729 7.911691 5895.212 0 "Angola" 1973 2852 7.955776 6026.363 0 "Angola" 1974 2727 7.910957 5987.492 0 "Angola" 1975 1710 7.444249 5885.455 0 "Angola" 1976 1521 7.327123 5943.466 0 "Angola" 1977 1500 7.313221 6163.714 0 "Angola" 1978 1530 7.333023 6287.18 0 "Angola" 1979 1527 7.33106 6452.546 0 "Angola" 1980 1532 7.334329 6743.08 0 end
log(GDPit)=ai+yeart+B1PTit+B2log(popit)+eit
where a denotes country-fixed effects, year are time-fixed effects, log(pop) is the logarithmic value of the population size, PT is an indicator set to 0 before birth rates decline and then set to 1 the year they start to decline and all following years. I then run a fixed effect model using
Code:
xtreg log_gdp post_treat log_pop yr_dumm*, fe robust cluster(id_var)
Code:
xtreg log_gdp post_treat log_pop yr_dumm*, fe robust cluster(id_var) Fixed-effects (within) regression Number of obs = 14,632 Group variable: id_var Number of groups = 169 R-sq: Obs per group: within = 0.7669 min = 31 between = 0.0006 avg = 86.6 overall = 0.1024 max = 164 F(132,168) = . corr(u_i, Xb) = -0.4907 Prob > F = . (Std. Err. adjusted for 169 clusters in id_var) ------------------------------------------------------------------------------ | Robust log_gdp | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- post_treat | -.1307779 .0433683 -3.02 0.003 -.216395 -.0451609 log_pop | -.2143739 .0591918 -3.62 0.000 -.3312295 -.0975182 yr_dumm2 | .0107005 .0207205 0.52 0.606 -.0302057 .0516067 yr_dumm3 | .0358843 .0206034 1.74 0.083 -.0047908 .0765593 yr_dumm4 | .0410382 .0214505 1.91 0.057 -.0013092 .0833855 . . . yr_dumm161 | 3.274882 .1349918 24.26 0.000 3.008383 3.541381 yr_dumm162 | 3.287548 .1358326 24.20 0.000 3.01939 3.555707 yr_dumm163 | 3.31182 .136246 24.31 0.000 3.042845 3.580795 yr_dumm164 | 3.332759 .1370114 24.32 0.000 3.062273 3.603245 _cons | 8.297784 .4531923 18.31 0.000 7.403098 9.192469 -------------+---------------------------------------------------------------- sigma_u | 1.0692478 sigma_e | .33960843 rho | .90836515 (fraction of variance due to u_i) ------------------------------------------------------------------------------
As a side note, this is my first post so I would greatly appreciate any helpful comments as to how I should post in the future.
I hope you all have a pleasant day,
Niels
0 Response to Panel data difference-in-difference with different treatment timing
Post a Comment