I am building a regression model for ethnicity as a categorical exposure variable and death as an outcome. I want to assess the derived odds ratios across different socioeconomic statuses (modifier of effect). For socioeconomic status (SES) coded categorically from 1 to 10, there are missing data for which I am using MICE to handle. However, 10 categories are a lot and I need to group them into three broad categories, so the resultant variable (SES_cat) is a passive variable that depends on the imputation of SES.
I have tried the below syntaxes but I get a message stating
estimation sample varies between m=1 and m=2; click here for details
mi set mlong
mi register imputed SES
mi register regular death selfharm gender age
mi impute chained (mlogit, augment) SES = death i.selfharm i.gender age , add(10)
mi passive: gen SES_cat=0
replace SES_cat=1 if SES >0 & SES <5
replace SES_cat=2 if SES >4 & SES <8
replace SES_cat=3 if SES >7 & SES <11
mi update
mi estimate, or: clogit death i.ethnicity if SES_cat==1, group(matchedid)
mi register imputed SES
mi register regular death selfharm gender age
mi impute chained (mlogit, augment) SES = death i.selfharm i.gender age , add(10)
mi passive: gen SES_cat=0
replace SES_cat=1 if SES >0 & SES <5
replace SES_cat=2 if SES >4 & SES <8
replace SES_cat=3 if SES >7 & SES <11
mi update
mi estimate, or: clogit death i.ethnicity if SES_cat==1, group(matchedid)
here is something about the specified model that causes the estimation sample to be different between imputations. Here are several situations when this can happen:
1. You are fitting a model on a subsample that changes from one imputation to another. For example, you specified the if expression containing imputed variables.
1. You are fitting a model on a subsample that changes from one imputation to another. For example, you specified the if expression containing imputed variables.
Your help is much appreciated.
0 Response to multiple imputation (MICE) and varying estimation sample!
Post a Comment