Hello everyone,

I am trying to include interaction terms (between a dummy variable and time-dummy variables) in a random-effects regression in order to estimate the impact of the system of government in COVID-19 outcomes. This is a sample of my dataset:

Code:
* Example generated by -dataex-. For more info, type help dataex
clear
input str8 country float(date total_cases_per_million country_system total_tests_per_thousand population_density aged_65_older gdp_per_capita)
"AFG" 721      .026 0       .  54.422  2.581 1803.987
"AFG" 722     4.495 0       .  54.422  2.581 1803.987
"AFG" 723    54.639 0       .  54.422  2.581 1803.987
"AFG" 724   390.667 0       .  54.422  2.581 1803.987
"AFG" 725   809.359 0       .  54.422  2.581 1803.987
"AFG" 726   941.859 0       .  54.422  2.581 1803.987
"AFG" 727   980.237 0       .  54.422  2.581 1803.987
"AFG" 728  1008.725 0       .  54.422  2.581 1803.987
"AFG" 729  1064.135 0       .  54.422  2.581 1803.987
"AFG" 730  1188.697 0       .  54.422  2.581 1803.987
"AFG" 731  1323.612 0       .  54.422  2.581 1803.987
"AFG" 732  1413.443 0       .  54.422  2.581 1803.987
"AFG" 733  1431.194 0       .  54.422  2.581 1803.987
"AFG" 734  1450.203 0       .  54.422  2.581 1803.987
"AFG" 735  1534.743 0       .  54.422  2.581 1803.987
"AGO" 721         . 0       .   23.89  2.405 5819.495
"AGO" 722      .213 0       .   23.89  2.405 5819.495
"AGO" 723      .822 0       .   23.89  2.405 5819.495
"AGO" 724     2.617 0       .   23.89  2.405 5819.495
"AGO" 725     8.641 0       .   23.89  2.405 5819.495
"AGO" 726    34.929 0       .   23.89  2.405 5819.495
"AGO" 727    80.751 0       .   23.89  2.405 5819.495
"AGO" 728    151.28 0       .   23.89  2.405 5819.495
"AGO" 729   328.757 0       .   23.89  2.405 5819.495
"AGO" 730   460.624 0       .   23.89  2.405 5819.495
"AGO" 731   534.073 0       .   23.89  2.405 5819.495
"AGO" 732    602.32 0       .   23.89  2.405 5819.495
"AGO" 733   633.081 0       .   23.89  2.405 5819.495
"AGO" 734   678.842 0       .   23.89  2.405 5819.495
"AGO" 735   810.923 0       .   23.89  2.405 5819.495
"ALB" 721         . 0    .009 104.871 13.188 11803.43
"ALB" 722     84.44 0    .539 104.871 13.188 11803.43
"ALB" 723   268.608 0   2.826 104.871 13.188 11803.43
"ALB" 724   395.093 0   5.075 104.871 13.188 11803.43
"ALB" 725   880.881 0   8.178 104.871 13.188 11803.43
"ALB" 726  1833.345 0   12.83 104.871 13.188 11803.43
"ALB" 727   3305.65 0  20.282 104.871 13.188 11803.43
"ALB" 728  4742.859 0   29.04 104.871 13.188 11803.43
"ALB" 729  7253.805 0  41.959 104.871 13.188 11803.43
"ALB" 730 13267.774 0  61.553 104.871 13.188 11803.43
"ALB" 731  20264.09 0  86.012 104.871 13.188 11803.43
"ALB" 732  27148.17 0 119.226 104.871 13.188 11803.43
"ALB" 733  37239.21 0 154.441 104.871 13.188 11803.43
"ALB" 734  43490.52 0 186.457 104.871 13.188 11803.43
"ALB" 735  45550.42 0 212.268 104.871 13.188 11803.43
"AND" 721         . 0       . 163.755  17.36      145
"AND" 722  4866.369 0       . 163.755  17.36      145
"AND" 723  9642.141 0       . 163.755  17.36      145
"AND" 724  9888.048 0       . 163.755  17.36      145
"AND" 725 11065.812 0       . 163.755  17.36      145
end
format %tm date
and this is my code with the output I get:

Code:
. quietly tab date, gen(dt) 


. gen dtfed1 = dt1*country_system
. gen dtfed2 = dt2*country_system
. gen dtfed3 = dt3*country_system
....

 gen dtfed14 = dt14*country_system
. gen dtfed15 = dt15*country_system


. xtreg total_cases_per_million dtfed1-dtfed13 total_tests_per_thousand  total_vaccinatio
> ns_per_hundred health_exp_percap population_density median_age aged_65_older gdp_per_ca
> pita cardiovasc_death_rate diabetes_prevalence hospital_beds_per_thousand life_expectan
> cy human_development_index, re vce(cluster country)
note: dtfed1 omitted because of collinearity
note: dtfed2 omitted because of collinearity
note: dtfed3 omitted because of collinearity
note: dtfed4 omitted because of collinearity
note: dtfed5 omitted because of collinearity
note: dtfed6 omitted because of collinearity
note: dtfed7 omitted because of collinearity
note: dtfed8 omitted because of collinearity
note: dtfed9 omitted because of collinearity
note: dtfed10 omitted because of collinearity

Random-effects GLS regression                   Number of obs     =        355
Group variable: n_country                       Number of groups  =         98

R-sq:                                           Obs per group:
     within  = 0.6188                                         min =          1
     between = 0.4673                                         avg =        3.6
     overall = 0.4534                                         max =          5

                                                Wald chi2(15)     =     431.87
corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =     0.0000

                                         (Std. Err. adjusted for 98 clusters in country)
----------------------------------------------------------------------------------------
                       |               Robust
total_cases_per_mill~n |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-----------------------+----------------------------------------------------------------
                dtfed1 |          0  (omitted)
                dtfed2 |          0  (omitted)
                dtfed3 |          0  (omitted)
                dtfed4 |          0  (omitted)
                dtfed5 |          0  (omitted)
                dtfed6 |          0  (omitted)
                dtfed7 |          0  (omitted)
                dtfed8 |          0  (omitted)
                dtfed9 |          0  (omitted)
               dtfed10 |          0  (omitted)
               dtfed11 |  -4446.301   1920.757    -2.31   0.021    -8210.915   -681.6861
               dtfed12 |     1227.5   1805.337     0.68   0.497    -2310.895    4765.894
               dtfed13 |   787.4111   1429.474     0.55   0.582    -2014.306    3589.128
total_tests_per_thou~d |    4.45421   1.505005     2.96   0.003     1.504455    7.403965
total_vaccinations_p~d |   511.9297   59.03842     8.67   0.000     396.2165    627.6428
     health_exp_percap |  -58.45041   39.52342    -1.48   0.139    -135.9149    19.01408
    population_density |  -4.688127    1.59506    -2.94   0.003    -7.814386   -1.561867
            median_age |   605.3898   1127.326     0.54   0.591    -1604.128    2814.908
         aged_65_older |    281.571    1342.56     0.21   0.834    -2349.798     2912.94
        gdp_per_capita |   .0264917   .2005317     0.13   0.895    -.3665433    .4195267
 cardiovasc_death_rate |   16.41957     23.633     0.69   0.487    -29.90025    62.73939
   diabetes_prevalence |   195.1546   906.3207     0.22   0.830    -1581.201    1971.511
hospital_beds_per_th~d |   -7.09797    19.0103    -0.37   0.709    -44.35748    30.16154
       life_expectancy |   384.9465   673.9632     0.57   0.568    -935.9971     1705.89
human_development_in~x |   24361.15   46636.84     0.52   0.601    -67045.38    115767.7
                 _cons |  -45405.35   30746.72    -1.48   0.140    -105667.8    14857.11
-----------------------+----------------------------------------------------------------
               sigma_u |  20273.189
               sigma_e |  6873.5459
                   rho |  .89689939   (fraction of variance due to u_i)
----------------------------------------------------------------------------------------

. 
end of do-file
I do not understand why I have so many omitted variables since I have already not including two of the interaction terms in my model. I would be extremely grateful to whoever is willing to help with this issue.
Thank you in advance for your time and Best regards

Alessio Lombini