Hello,

I'm attempting to do some post estimation on a model with an interaction term. I want to test/contrast a specific subgroup (described below after the marginal table) of patients to determine if their postoperative length of stay is significantly different. Below is my code/output and the groups of interest.

Code:
 xtmixed  post_operative_los  age_year sex ib1.race ib2.ethnicity ib0.insurance i.open##i.perf year i.post_iv##i.post_op ib3.region || hospital_number :, mle vari
> ance robust nostderr

Performing EM optimization: 

Performing gradient-based optimization: 

Iteration 0:   log pseudolikelihood = -212226.72  
Iteration 1:   log pseudolikelihood = -212226.72  (backed up)

Mixed-effects regression                        Number of obs     =     94,745
Group variable: hospital_num~r                  Number of groups  =         46

                                                Obs per group:
                                                              min =        191
                                                              avg =    2,059.7
                                                              max =      6,358

                                                Wald chi2(21)     =    4495.79
Log pseudolikelihood = -212226.72               Prob > chi2       =     0.0000

                             (Std. Err. adjusted for 46 clusters in hospital_number)
------------------------------------------------------------------------------------
                   |               Robust
post_operative_los |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------------+----------------------------------------------------------------
          age_year |  -.0245202   .0035618    -6.88   0.000    -.0315012   -.0175391
               sex |   .0731537    .014544     5.03   0.000      .044648    .1016595
                   |
              race |
                2  |   .3538417   .0401767     8.81   0.000     .2750968    .4325866
                3  |   .1088548   .0466723     2.33   0.020     .0173788    .2003308
                4  |   .3558918   .1211113     2.94   0.003     .1185181    .5932656
                5  |   .0751263   .1512244     0.50   0.619    -.2212681    .3715206
                6  |     .00734   .0303526     0.24   0.809      -.05215      .06683
                   |
         ethnicity |
                1  |   .0832976   .0282652     2.95   0.003     .0278988    .1386964
                3  |  -.0009093   .0497022    -0.02   0.985    -.0983239    .0965052
                   |
         insurance |
                1  |   .1357891   .0234376     5.79   0.000     .0898523    .1817259
                2  |    .143156   .0703809     2.03   0.042      .005212    .2810999
                   |
            1.open |    .419797   .1544747     2.72   0.007     .1170322    .7225618
            1.perf |   2.727641   .1067416    25.55   0.000     2.518431     2.93685
                   |
         open#perf |
              1 1  |   1.496406   .2097454     7.13   0.000     1.085313      1.9075
                   |
              year |   .0038202   .0126195     0.30   0.762    -.0209136    .0285539
         1.post_iv |   .8388155     .08747     9.59   0.000     .6673774    1.010254
         1.post_op |   .6839905   .0599004    11.42   0.000     .5665878    .8013931
                   |
   post_iv#post_op |
              1 1  |   1.121246    .140226     8.00   0.000     .8464083    1.396084
                   |
            region |
                0  |  -.0405478   .1405433    -0.29   0.773    -.3160076    .2349119
                1  |  -.0952114   .1549485    -0.61   0.539    -.3989048     .208482
                2  |  -.1613537   .1281015    -1.26   0.208     -.412428    .0897206
                   |
             _cons |  -6.567582   25.37871    -0.26   0.796    -56.30895    43.17378
------------------------------------------------------------------------------------

------------------------------------------------------------------------------
                             |               Robust           
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
hospital_n~r: Identity       |
                  var(_cons) |   .1170936          .             .           .
-----------------------------+------------------------------------------------
               var(Residual) |   5.156716          .             .           .
------------------------------------------------------------------------------
Code:
contrast post_iv@post_op, effects

Contrasts of marginal linear predictions

Margins      : asbalanced

---------------------------------------------------
                |         df        chi2     P>chi2
----------------+----------------------------------
post_operativ~s |
post_iv@post_op |
             0  |          1       91.96     0.0000
             1  |          1      126.73     0.0000
         Joint  |          2      139.22     0.0000
---------------------------------------------------

------------------------------------------------------------------------------------
                   |   Contrast   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------------+----------------------------------------------------------------
post_operative_los |
   post_iv@post_op |
    (1 vs base) 0  |   .8388155     .08747     9.59   0.000     .6673774    1.010254
    (1 vs base) 1  |   1.960062   .1741152    11.26   0.000     1.618802    2.301321
------------------------------------------------------------------------------------

. contrast post_iv@post_op

Contrasts of marginal linear predictions

Margins      : asbalanced

---------------------------------------------------
                |         df        chi2     P>chi2
----------------+----------------------------------
post_operativ~s |
post_iv@post_op |
             0  |          1       91.96     0.0000
             1  |          1      126.73     0.0000
         Joint  |          2      139.22     0.0000
---------------------------------------------------

. margins post_iv#post_op

Predictive margins                              Number of obs     =     94,745
Model VCE    : Robust

Expression   : Linear prediction, fixed portion, predict()

---------------------------------------------------------------------------------
                |            Delta-method
                |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
----------------+----------------------------------------------------------------
post_iv#post_op |
           0 0  |   1.954336   .0483895    40.39   0.000     1.859494    2.049177
           0 1  |   2.638326   .0582607    45.28   0.000     2.524137    2.752515
           1 0  |   2.793151   .0858496    32.54   0.000     2.624889    2.961414
           1 1  |   4.598388   .1838243    25.02   0.000     4.238099    4.958677
---------------------------------------------------------------------------------
I'd like to compare patients who received postoperative opioids (post_op) but did not get IV acetaminophen (post_iv) which is group 0 1 vs patients who got IV acetaminophen but not postoperative opioids (group 1 0). However, I'm unsure what code to use to test if these two groups are statistically different.

Hopefully, I've provided enough information but let me know if there are other important details to include.

Thank you!