I'm attempting to do some post estimation on a model with an interaction term. I want to test/contrast a specific subgroup (described below after the marginal table) of patients to determine if their postoperative length of stay is significantly different. Below is my code/output and the groups of interest.
Code:
xtmixed post_operative_los age_year sex ib1.race ib2.ethnicity ib0.insurance i.open##i.perf year i.post_iv##i.post_op ib3.region || hospital_number :, mle vari > ance robust nostderr Performing EM optimization: Performing gradient-based optimization: Iteration 0: log pseudolikelihood = -212226.72 Iteration 1: log pseudolikelihood = -212226.72 (backed up) Mixed-effects regression Number of obs = 94,745 Group variable: hospital_num~r Number of groups = 46 Obs per group: min = 191 avg = 2,059.7 max = 6,358 Wald chi2(21) = 4495.79 Log pseudolikelihood = -212226.72 Prob > chi2 = 0.0000 (Std. Err. adjusted for 46 clusters in hospital_number) ------------------------------------------------------------------------------------ | Robust post_operative_los | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------------+---------------------------------------------------------------- age_year | -.0245202 .0035618 -6.88 0.000 -.0315012 -.0175391 sex | .0731537 .014544 5.03 0.000 .044648 .1016595 | race | 2 | .3538417 .0401767 8.81 0.000 .2750968 .4325866 3 | .1088548 .0466723 2.33 0.020 .0173788 .2003308 4 | .3558918 .1211113 2.94 0.003 .1185181 .5932656 5 | .0751263 .1512244 0.50 0.619 -.2212681 .3715206 6 | .00734 .0303526 0.24 0.809 -.05215 .06683 | ethnicity | 1 | .0832976 .0282652 2.95 0.003 .0278988 .1386964 3 | -.0009093 .0497022 -0.02 0.985 -.0983239 .0965052 | insurance | 1 | .1357891 .0234376 5.79 0.000 .0898523 .1817259 2 | .143156 .0703809 2.03 0.042 .005212 .2810999 | 1.open | .419797 .1544747 2.72 0.007 .1170322 .7225618 1.perf | 2.727641 .1067416 25.55 0.000 2.518431 2.93685 | open#perf | 1 1 | 1.496406 .2097454 7.13 0.000 1.085313 1.9075 | year | .0038202 .0126195 0.30 0.762 -.0209136 .0285539 1.post_iv | .8388155 .08747 9.59 0.000 .6673774 1.010254 1.post_op | .6839905 .0599004 11.42 0.000 .5665878 .8013931 | post_iv#post_op | 1 1 | 1.121246 .140226 8.00 0.000 .8464083 1.396084 | region | 0 | -.0405478 .1405433 -0.29 0.773 -.3160076 .2349119 1 | -.0952114 .1549485 -0.61 0.539 -.3989048 .208482 2 | -.1613537 .1281015 -1.26 0.208 -.412428 .0897206 | _cons | -6.567582 25.37871 -0.26 0.796 -56.30895 43.17378 ------------------------------------------------------------------------------------ ------------------------------------------------------------------------------ | Robust Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ hospital_n~r: Identity | var(_cons) | .1170936 . . . -----------------------------+------------------------------------------------ var(Residual) | 5.156716 . . . ------------------------------------------------------------------------------
Code:
contrast post_iv@post_op, effects Contrasts of marginal linear predictions Margins : asbalanced --------------------------------------------------- | df chi2 P>chi2 ----------------+---------------------------------- post_operativ~s | post_iv@post_op | 0 | 1 91.96 0.0000 1 | 1 126.73 0.0000 Joint | 2 139.22 0.0000 --------------------------------------------------- ------------------------------------------------------------------------------------ | Contrast Std. Err. z P>|z| [95% Conf. Interval] -------------------+---------------------------------------------------------------- post_operative_los | post_iv@post_op | (1 vs base) 0 | .8388155 .08747 9.59 0.000 .6673774 1.010254 (1 vs base) 1 | 1.960062 .1741152 11.26 0.000 1.618802 2.301321 ------------------------------------------------------------------------------------ . contrast post_iv@post_op Contrasts of marginal linear predictions Margins : asbalanced --------------------------------------------------- | df chi2 P>chi2 ----------------+---------------------------------- post_operativ~s | post_iv@post_op | 0 | 1 91.96 0.0000 1 | 1 126.73 0.0000 Joint | 2 139.22 0.0000 --------------------------------------------------- . margins post_iv#post_op Predictive margins Number of obs = 94,745 Model VCE : Robust Expression : Linear prediction, fixed portion, predict() --------------------------------------------------------------------------------- | Delta-method | Margin Std. Err. z P>|z| [95% Conf. Interval] ----------------+---------------------------------------------------------------- post_iv#post_op | 0 0 | 1.954336 .0483895 40.39 0.000 1.859494 2.049177 0 1 | 2.638326 .0582607 45.28 0.000 2.524137 2.752515 1 0 | 2.793151 .0858496 32.54 0.000 2.624889 2.961414 1 1 | 4.598388 .1838243 25.02 0.000 4.238099 4.958677 ---------------------------------------------------------------------------------
Hopefully, I've provided enough information but let me know if there are other important details to include.
Thank you!
0 Response to Marginal contrasts with an interaction term
Post a Comment