I have data of 1323 firms, from 2014-2018 and within 30 industries, my data is unbalanced in which some firms don’t have data for some years. I got a total of 5,108 observations. I have run the below command to set panel data.
Code:
. xtset firmcode year panel variable: firmcode (unbalanced) time variable: year, 2014 to 2018, but with gaps delta: 1 unit
Code:
. xtreg roa_w fnsub indb bsize oeb c.fnsub##c.indb c.fnsub##c.bsize c.fnsub##c.oeb rdratio fage fsize lev ib1.y > eardummy ib1.inddummy,fe . estimates store fixed . xtreg roa_w fnsub indb bsize oeb c.fnsub##c.indb c.fnsub##c.bsize c.fnsub##c.oeb rdratio fage fsize lev ib1.y > eardummy ib1.inddummy,re . estimates store random . hausman fixed random b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(12) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 131.79 Prob>chi2 = 0.0000 (V_b-V_B is not positive definite)
- VIF: to check the multicollinearity test, the lowest VIF = 1.04, the highest VIF= 1.82, both are less than 10, so my variables don’t have multicollinearity problem.
- Ramsey RESET test: for omitted variable, result Prob>F = 0.0000
- White’s test for Heteroskedasicity: Prob>chi2 = 0.0000
- Breusch-Godfrey LM test for autocorrelation: Prob>chi2 = 0.0000
There are 3 models for my study:
M1:
Code:
xtreg roa_w fnsub rdratio fage fsize lev ib1.yeardummy ib1.inddummy,fe
Code:
xtreg roa_w fnsub indb bsize oeb rdratio fage fsize lev ib1.yeardummy ib1.inddummy,fe
Code:
xtreg roa_w fnsub indb bsize oeb c.fnsub##c.indb c.fnsub##c.bsize c.fnsub##c.oeb rdratio fage fsize lev ib1.yeardummy ib1.inddummy,fe
X = fnsub (Number of foreign subsidiaries)
Moderating variables = indb (Independent board), bsize (Board size), oeb (Oversea experience board)
Control variables = rdratio (R&D ratio), fsize (Firm size), fage (Firm age), lev (Leverage ratio), inddummy (Industry), yeardummy (Year),
The output result of Model 3 (with interaction term), it doesn’t show the coefficient of roa_w and fnsub, and this coefficient is the main point of this study. Then I switch to run the Random Effect model, still I don’t get the coefficient of roa_w and fnsub.
Fnsub (Number of foreign subsidiaries) is omitted because it doesn’t change across time, but sometimes it changes for some years when the firm increases its subsidiary's number. Previous research had balanced penal data, and use a random effect model.
Please help to suggest what Model I should use. I am not sure whether the code that I enter to run the regression for data is correct or not. I am so confused with the dummy variables (year and industry). I am new to Stata! Thank you very much. I really need your help!
Below is the result of fnsub omitted!
Code:
. xtreg roa_w fnsub indb bsize oeb c.fnsub##c.indb c.fnsub##c.bsize c.fnsub##c.oeb rdratio fage fsize lev ib1.year > dummy ib1.inddummy,fe note: fnsub omitted because of collinearity note: indb omitted because of collinearity note: fnsub omitted because of collinearity note: bsize omitted because of collinearity note: fnsub omitted because of collinearity note: oeb omitted because of collinearity note: 0.inddummy omitted because of collinearity Fixed-effects (within) regression Number of obs = 5,108 Group variable: firmcode Number of groups = 1,323 R-sq: Obs per group: within = 0.1867 min = 1 between = 0.0730 avg = 3.9 overall = 0.0940 max = 5 F(12,3773) = 72.16 corr(u_i, Xb) = -0.5890 Prob > F = 0.0000 --------------------------------------------------------------------------------- roa_w | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------+---------------------------------------------------------------- fnsub | -.0032305 .001998 -1.62 0.106 -.0071478 .0006867 indb | -.0188497 .0254971 -0.74 0.460 -.0688392 .0311398 bsize | .0001165 .0011576 0.10 0.920 -.0021531 .0023861 oeb | -.0245969 .0064587 -3.81 0.000 -.0372597 -.011934 fnsub | 0 (omitted) indb | 0 (omitted) | c.fnsub#c.indb | .0041808 .0031404 1.33 0.183 -.0019762 .0103379 | fnsub | 0 (omitted) bsize | 0 (omitted) | c.fnsub#c.bsize | .0000774 .000132 0.59 0.557 -.0001813 .0003362 | fnsub | 0 (omitted) oeb | 0 (omitted) | c.fnsub#c.oeb | .0015363 .0004951 3.10 0.002 .0005656 .002507 | rdratio | -.2935473 .0370724 -7.92 0.000 -.3662313 -.2208634 fage | -.0924686 .0092464 -10.00 0.000 -.110597 -.0743402 fsize | .0365267 .0021533 16.96 0.000 .0323051 .0407484 lev | -.176563 .0079622 -22.18 0.000 -.1921737 -.1609523 0.yeardummy | .0020265 .0019373 1.05 0.296 -.0017717 .0058247 0.inddummy | 0 (omitted) _cons | -.384708 .0416697 -9.23 0.000 -.4664053 -.3030107 ----------------+---------------------------------------------------------------- sigma_u | .05817084 sigma_e | .03557531 rho | .72779517 (fraction of variance due to u_i) --------------------------------------------------------------------------------- F test that all u_i=0: F(1322, 3773) = 4.73 Prob > F = 0.0000
(1) | (2) | (3) | (4) | (5) | (6) | |
roa_w | roa_w | roa_w | tobinq_w | tobinq_w | tobinq_w | |
fnsub | -0.000458* | -0.000451* | 0 | 0.00612 | 0.00611 | 0 |
(0.020) | (0.022) | (.) | (0.280) | (0.281) | (.) | |
rdratio | -0.290*** | -0.290*** | -0.294*** | -6.662*** | -6.658*** | -6.682*** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
fage | -0.0936*** | -0.0941*** | -0.0925*** | -9.418*** | -9.428*** | -9.429*** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
fsize | 0.0362*** | 0.0364*** | 0.0365*** | -0.516*** | -0.512*** | -0.509*** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
lev | -0.178*** | -0.177*** | -0.177*** | -3.051*** | -3.045*** | -3.046*** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
0.yeardummy | 0.00187 | 0.00206 | 0.00203 | 1.836*** | 1.840*** | 1.840*** |
(0.335) | (0.288) | (0.296) | (0.000) | (0.000) | (0.000) | |
1.yeardummy | 0 | 0 | 0 | 0 | 0 | 0 |
(.) | (.) | (.) | (.) | (.) | (.) | |
0.inddummy | 0 | 0 | 0 | 0 | 0 | 0 |
(.) | (.) | (.) | (.) | (.) | (.) | |
1.inddummy | 0 | 0 | 0 | 0 | 0 | 0 |
(.) | (.) | (.) | (.) | (.) | (.) | |
indb | -0.00460 | 0 | -0.366 | 0 | ||
(0.837) | (.) | (0.570) | (.) | |||
bsize | 0.000314 | 0 | -0.00679 | 0 | ||
(0.754) | (.) | (0.815) | (.) | |||
oeb | -0.0168** | 0 | -0.292 | 0 | ||
(0.005) | (.) | (0.089) | (.) | |||
c.fnsub#c.indb | 0.00418 | -0.00483 | ||||
(0.183) | (0.957) | |||||
c.fnsub#c.bsize | 0.0000774 | 0.00333 | ||||
(0.557) | (0.382) | |||||
c.fnsub#c.oeb | 0.00154** | 0.00274 | ||||
(0.002) | (0.848) | |||||
_cons | -0.386*** | -0.386*** | -0.385*** | 39.83*** | 40.02*** | 40.09*** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
N | 5108 | 5108 | 5108 | 5108 | 5108 | 5108 |
R2 | 0.183 | 0.184 | 0.187 | 0.446 | 0.447 | 0.447 |
adj. R2 | -0.105 | -0.103 | -0.101 | 0.252 | 0.252 | 0.251 |
F | 140.6 | 94.85 | 72.16 | 507.5 | 338.8 | 254.0 |
0 Response to Independent variables are not time-invariant values, but Hausmen test suggests to use fixed-effect model
Post a Comment