Hello everybody,

Situation:
I use Stata 14.2. I want to investigate the effects of mobile phone penetration (mobile_p100) on Human Development Index (hdi, an index ranging from 0 to 1). I am using an unbalanced panel data set of N=120 and T=10. As my main model, I will use the GMM estimator. Following related research, I additionally want to use the least-squares dummy variable (LSDV) estimator including the lagged dependent variable and country and time fixed effects for comparison purposes.

Problem:
- Starting with “regress y1 x1…xn i.year, robust” R^2 is at 0.6 which is reasonable
- Modifying “regress y1 L.y1 x1…xn i.year i.id, robust” R^2 reaches levels higher than 0.99. This happens also when I only add one of the modifications, either the lagged variable (L.y1) or the country fixed effects (i.id)
- Using “xtreg y1 x1 …xn i.year, fe robust” provides a R^2 of 0.80. As soon as I add the lagged dependent variable, R^2 reaches >0.99.

Solution tried:
- Related literature: It is not uncommon to report R^2 of around 0.80 in this field of research, but for a R^2 > 0.99 there is no justification.
- Dataset: I double checked the observations included in the dataset and did not find any irregularities (duplications, unrealistic values etc.)
- Excluding independent variables: I excluded independent variables each at a time and ran the model again. Even when only one independent variable is left in the model, R^2 stays at around 0.99
- Spurious regression: I suppose this is not the cause of the inflated R^2 since I do not have a problem with multicollinearity nor with exceptional high t-values
- Detrend dependent variable: Helps to decrease R^2 to a reasonable level, but the results differ completely from my GMM estimation and previous research on the topic at hand.
- Multicollinearity: Does not seem to be a problem in my model, since VIF is at maximum 2.40

Questions
1) Is it possible that there is a general problem with the dependent variable which could also distort the GMM results?
2) Do you see any possibilities to overcome the problem described?

Model: With country fixed effects and lagged dependent variable
Code:
 regress hdi L.hdi mobile_p100 mobile_gdp gdp_pc_growth gfcf_share fdi_share pop_growth i.year i.
> id, robust

Linear regression                               Number of obs     =      1,177
                                                F(135, 1041)      =   44627.47
                                                Prob > F          =     0.0000
                                                R-squared         =     0.9996
                                                Root MSE          =      .0032

-------------------------------------------------------------------------------
              |               Robust
          hdi |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
--------------+----------------------------------------------------------------
          hdi |
          L1. |   .8331407   .0175466    47.48   0.000       .79871    .8675714
              |
  mobile_p100 |   .0000201   7.99e-06     2.52   0.012     4.43e-06    .0000358
   mobile_gdp |  -.0000426   .0000288    -1.48   0.138    -.0000991    .0000138
gdp_pc_growth |   .0004162   .0000522     7.98   0.000     .0003139    .0005185
   gfcf_share |   .0000549   .0000294     1.87   0.062    -2.79e-06    .0001126
    fdi_share |   .0000116   9.64e-06     1.21   0.228    -7.29e-06    .0000305
   pop_growth |   .0001226   .0002455     0.50   0.618    -.0003591    .0006044
              |
         year |
        2010  |    .000235   .0005479     0.43   0.668    -.0008401    .0013101
        2011  |   .0013773   .0005606     2.46   0.014     .0002772    .0024773
        2012  |   .0018995   .0005998     3.17   0.002     .0007226    .0030764
        2013  |   .0033575   .0006629     5.06   0.000     .0020567    .0046584
        2014  |   .0031978   .0007293     4.38   0.000     .0017668    .0046288
        2015  |   .0033857   .0007334     4.62   0.000     .0019466    .0048248
        2016  |   .0037577   .0007513     5.00   0.000     .0022834    .0052319
        2017  |    .003713   .0008163     4.55   0.000     .0021112    .0053149
        2018  |   .0033513   .0008486     3.95   0.000     .0016862    .0050165
              |
        id |
         ALB  |   .0339267   .0046612     7.28   0.000     .0247802    .0430732
        [...all 120 countries...]
         ZMB  |   .0005514    .001493     0.37   0.712    -.0023783    .0034811
              |
        _cons |    .093336   .0089645    10.41   0.000     .0757455    .1109264
-------------------------------------------------------------------------------

Model: Without country fixed effects and lagged dependent variable
Code:
 regress hdi mobile_p100 mobile_gdp gdp_pc_growth gfcf_share fdi_share pop_growth i.year, robust

Linear regression                               Number of obs     =      1,295
                                                F(16, 1278)       =     107.59
                                                Prob > F          =     0.0000
                                                R-squared         =     0.6149
                                                Root MSE          =     .08985

-------------------------------------------------------------------------------
              |               Robust
          hdi |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
--------------+----------------------------------------------------------------
  mobile_p100 |   .0015012   .0000934    16.07   0.000     .0013179    .0016844
   mobile_gdp |  -.0065454   .0006642    -9.85   0.000    -.0078484   -.0052424
gdp_pc_growth |  -.0069348   .0010797    -6.42   0.000     -.009053   -.0048166
   gfcf_share |  -.0006863   .0003695    -1.86   0.064    -.0014112    .0000386
    fdi_share |   .0003447   .0001267     2.72   0.007     .0000962    .0005932
   pop_growth |  -.0241198   .0023824   -10.12   0.000    -.0287936   -.0194459
              |
         year |
        2009  |  -.0512804   .0121719    -4.21   0.000    -.0751596   -.0274012
        2010  |  -.0304352   .0109545    -2.78   0.006     -.051926   -.0089443
        2011  |  -.0422082   .0108261    -3.90   0.000    -.0634471   -.0209694
        2012  |  -.0546703   .0110025    -4.97   0.000    -.0762553   -.0330853
        2013  |  -.0529743   .0114669    -4.62   0.000    -.0754703   -.0304783
        2014  |  -.0531553   .0116728    -4.55   0.000    -.0760553   -.0302553
        2015  |  -.0549756   .0122075    -4.50   0.000    -.0789246   -.0310266
        2016  |  -.0543252   .0120781    -4.50   0.000    -.0780203     -.03063
        2017  |  -.0474105   .0118148    -4.01   0.000    -.0705891   -.0242319
        2018  |  -.0504147    .012046    -4.19   0.000    -.0740467   -.0267827
              |
        _cons |    .709139    .016166    43.87   0.000     .6774242    .7408537
-------------------------------------------------------------------------------
Thank you very much and best wishes,
Patrick


PS: A similar question was asked here: link. Unfortunately, the recommendations given there did not solve the prevalent problem.