I am running some regression on my dataset and I do get mixed results which is very confusing for me.
Running the LM-Test to see if I use RE or OLS I get prob > chibar2 = 1.000 which indicates that I should take pooled regression
Code:
// Try as Panel Data RE and LM Test xtset namex monthly_date, monthly xtreg ri mktminusrf smb_5 hml rmw cma logdiff_fintech_funding, re xttest0
Code:
xtreg ri mktminusrf smb_5 hml rmw cma logdiff_fintech_funding, fe estimates store fe xtreg ri mktminusrf smb_5 hml rmw cma logdiff_fintech_funding, re hausman fe
Code:
reg ri mktminusrf smb_5 hml rmw cma logdiff_fintech_funding i.namex reg ri mktminusrf smb_5 hml rmw cma logdiff_fintech_funding i.monthly_date
Here is a sample data
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input double logdiff_fintech_funding float monthly_date double(mktminusrf smb_5 hml rmw cma rf ri) float namex -2.428878818318338 601 3.4 1.53 2.74 -.55 1.43 0 9.74967061923584 1 4.750675543873377 602 6.31 1.85 2.01 -.9 1.67 .01 7.19288115246098 1 -1.547824874555269 603 2 5.03 3.12 .49 1.69 .01 -.1219820828667389 1 -2.377775945715615 604 -7.89 -.08 -2.32 1.38 -.18 .01 -11.73197309417041 1 2.033946504409595 605 -5.56 -2.59 -4.27 -.34 -1.48 .01 -8.650023366859694 1 1.866966321771243 606 6.93 .13 .04 .32 2.03 .01 -2.30703713485449 1 -6.230064946559605 607 -4.77 -3.07 -1.51 .34 -2.13 .01 -11.26298770771683 1 5.650530448089943 608 9.54 3.71 -2.94 -.01 .39 .01 5.226579911347658 1 .453532778924937 609 3.88 .72 -2.23 1.46 -.16 .01 -12.63015385787189 1 -2.051943886966359 610 .6 3.54 -.58 -.1 1.76 .01 -4.368399944212481 1 2.453635974122106 611 6.82 1.03 3.47 -3.44 3.44 .01 21.90832010280622 1 -2.555251514231911 612 1.99 -2.38 .68 -1.07 .8 .01 2.913674964491289 1 -.3940574407002404 613 3.49 1.76 1.73 -1.76 .72 .01 4.068267880099642 1 .9019179029163964 614 .45 2.66 -1.16 1.21 -.03 .01 -6.657778025904411 1 -3.366182863817053 615 2.9 -.41 -2.15 .96 -1.28 0 -7.876952978993803 1 3.801343710610448 616 -1.27 -.69 -2.12 2.02 -1.46 0 -4.316214001119832 1 .5375060083539553 617 -1.75 .09 -.26 2.16 -1.4 0 -6.63788863069695 1 -.9872492784416207 618 -2.36 -1.38 -1.18 2.41 -1.75 0 -11.40552472135674 1 .6191782687064706 619 -5.99 -3.39 -1.58 2.79 -.23 .01 -15.76704135095508 1 .263701731990106 620 -7.59 -3.9 -.98 1.71 .24 0 -25.09158623711403 1 -1.255992779152897 621 11.35 3.72 -.96 -1.42 -.86 0 11.60089037646026 1 -7.328765598425764 622 -.28 -.34 -.18 1.46 1.52 0 -20.20469666749166 1 6.918695219020471 623 .74 -.36 1.57 .59 2.44 0 2.205842106223427 1 1.664472961319299 624 5.05 2.35 -2.14 -1.05 -1.41 0 28.23735227962441 1 -4.488823618117669 625 4.42 -1.54 .01 -.17 -.03 0 11.9215991981736 1 2.808398174936492 626 3.11 -.3 -.06 .25 .77 0 20.07462686567165 1 -.1262357447864098 627 -.85 -.66 -.2 .96 .72 0 -15.25585249637455 1 .4387329863579144 628 -6.19 -.2 .08 1.98 2.37 .01 -9.258032073534451 1 .6944331180936318 629 3.89 .99 .54 -1.48 .37 0 11.29353769900062 1 -.8876966737515692 630 .79 -2.74 .01 .68 .12 0 -10.26975348234923 1 1.840011420252095 631 2.55 .61 .6 -.77 -.69 .01 8.845620743138433 1 -.6554042290035031 632 2.73 .69 1.56 -1.14 1.57 .01 10.62919416188624 1 -.2497564922306408 633 -1.76 -.8 4.16 -1.35 2.28 .01 5.538836480100336 1 -2.997485122381406 634 .78 .41 -1.12 .94 .93 .01 5.783980032465801 1 2.968343045907073 635 1.18 1.91 3.26 -1.75 .88 .01 17.84005114627837 1 .2701289866054237 636 5.57 .57 1.34 -1.88 1.47 0 -2.497596010654139 1 .1509605075700726 637 1.29 -.35 .28 -.96 .49 0 -.7069419958456361 1 -1.062582825088892 638 4.03 .9 -.07 .13 1.21 0 8.459320722874628 1 2.455217987516834 639 1.56 -2.32 .35 .04 .39 0 1.067330134854775 1 -.6101666516017357 640 2.8 2.27 1.33 -.71 -.83 0 10.96632961534452 1 -.8187397318572058 641 -1.2 1.33 -.4 -.47 .01 0 -5.78314123640568 1 .1706158923222114 642 5.65 1.81 .71 -1.43 .53 0 13.53024190455739 1 -.7756070164821449 643 -2.71 -.03 -2.48 .85 -2.13 0 -3.287326969457456 1 1.726891305749435 644 3.77 2.72 -1.57 -.1 -1.32 0 -2.19549166299936 1 .3957065823815764 645 4.18 -1.57 1.36 2.83 .89 0 1.232019655177335 1 -1.548639224836185 646 3.12 1.47 -.38 .77 .12 0 13.24265022329774 1 -1.181443691265908 647 2.81 -.44 -.2 -.57 .07 0 -1.517048888224331 1 -.0883624242566112 648 -3.32 .56 -1.88 -4.5 -1.42 0 7.578728949732418 1 1.654120853093416 649 4.65 .16 -.49 -.49 -.4 0 -1.313700354005207 1 .7675383150229624 650 .43 -1.23 4.6 1.76 1.91 0 4.113931593373855 1 .7337002959205572 651 -.19 -4.21 1.62 2.85 1.09 0 -11.97717543096541 1 -1.300090055657543 652 2.06 -1.83 -.38 .45 -1.09 0 0 1 3.226876440418037 653 2.61 3.04 -.6 -1.9 -1.9 0 1.585206473468275 1 -1.639863325627885 654 -2.04 -4.16 .04 1.48 .44 0 -.7802349025506456 1 -1.073779734353744 655 4.23 .3 -.76 -.91 -.65 0 5.50781854776281 1 -.7707598557843998 656 -1.97 -3.8 -1.68 1.28 -.62 0 6.277437421279833 1 .1447530739194685 657 2.52 3.79 -1.81 -.78 -.18 0 .6449163219633881 1 .1178356353986567 658 2.55 -2.27 -3.37 1.69 .15 0 -.6990888408729704 1 2.635474229565091 659 -.06 2.85 1.56 -1.52 .81 0 5.281517853545095 1 -3.078890081227631 660 -3.11 -.91 -3.06 1.09 -1.67 0 -15.31597537371373 1 .4817352432663817 661 6.13 .35 -2.16 .06 -1.62 0 4.35686522643044 1 .2211978151041967 662 -1.12 3.07 -.73 .16 -.54 0 -2.340530842046646 1 1.991202305673274 663 .59 -2.99 2.13 .41 -.49 0 3.509094249494756 1 -1.329517653461937 664 1.36 .85 -1.9 -1.54 -.68 0 3.578029941365856 1 .01391606423699 665 -1.53 2.88 -1.04 1.03 -1.51 0 3.454429422331463 1 .3699056815049282 666 1.54 -4.5 -4.49 .31 -2.6 0 5.053176298564061 1 -.1181539396678257 667 -6.04 .38 2.88 .75 1.14 0 -8.613293462008967 1 .1582819462867526 668 -3.07 -2.81 .73 1.66 -.5 0 -4.344877233271656 1 1.965128759761292 669 7.75 -2.05 -.32 1.19 .45 0 7.701828585644973 1 -2.397516434496359 670 .56 3.35 -1.23 -2.11 -1 0 3.873806760104661 1 -2.359402434240175 671 -2.17 -3 -2.07 .45 .17 .01 -3.165594842970808 1 1.646352401779502 672 -5.77 -3.56 3.13 2.27 3 .01 -15.99323717672722 1 -.8583285517720807 673 -.07 .87 -.03 2.44 2.09 .02 -11.47723012169207 1 1.201286271998179 674 6.96 1.01 1.3 .58 .07 .02 8.366773160473809 1 -2.428878818318338 601 3.4 1.53 2.74 -.55 1.43 0 2.368137782561895 2 4.750675543873377 602 6.31 1.85 2.01 -.9 1.67 .01 13.51961794602173 2 -1.547824874555269 603 2 5.03 3.12 .49 1.69 .01 3.077372645878357 2 -2.377775945715615 604 -7.89 -.08 -2.32 1.38 -.18 .01 -9.035157232704403 2 2.033946504409595 605 -5.56 -2.59 -4.27 -.34 -1.48 .01 -13.00623063881619 2 1.866966321771243 606 6.93 .13 .04 .32 2.03 .01 -5.065110542705463 2 -6.230064946559605 607 -4.77 -3.07 -1.51 .34 -2.13 .01 -10.92393114332057 2 5.650530448089943 608 9.54 3.71 -2.94 -.01 .39 .01 8.850566965344177 2 .453532778924937 609 3.88 .72 -2.23 1.46 -.16 .01 -2.169458881930408 2 -2.051943886966359 610 .6 3.54 -.58 -.1 1.76 .01 -.9071284330072684 2 2.453635974122106 611 6.82 1.03 3.47 -3.44 3.44 .01 13.30895218196535 2 -2.555251514231911 612 1.99 -2.38 .68 -1.07 .8 .01 5.69565179666697 2 -.3940574407002404 613 3.49 1.76 1.73 -1.76 .72 .01 -.1547070478347035 2 .9019179029163964 614 .45 2.66 -1.16 1.21 -.03 .01 -.5535264021315793 2 -3.366182863817053 615 2.9 -.41 -2.15 .96 -1.28 0 -1.311378461472698 2 3.801343710610448 616 -1.27 -.69 -2.12 2.02 -1.46 0 2.303116065498028 2 .5375060083539553 617 -1.75 .09 -.26 2.16 -1.4 0 -2.541673135824082 2 -.9872492784416207 618 -2.36 -1.38 -1.18 2.41 -1.75 0 -3.726017676045373 2 .6191782687064706 619 -5.99 -3.39 -1.58 2.79 -.23 .01 -13.21072808779173 2 .263701731990106 620 -7.59 -3.9 -.98 1.71 .24 0 -4.307173712418937 2 -1.255992779152897 621 11.35 3.72 -.96 -1.42 -.86 0 10.17386579733768 2 -7.328765598425764 622 -.28 -.34 -.18 1.46 1.52 0 -.7286401183577812 2 6.918695219020471 623 .74 -.36 1.57 .59 2.44 0 8.63191710445154 2 1.664472961319299 624 5.05 2.35 -2.14 -1.05 -1.41 0 8.660940215237343 2 -4.488823618117669 625 4.42 -1.54 .01 -.17 -.03 0 7.576411173654582 2 2.808398174936492 626 3.11 -.3 -.06 .25 .77 0 7.316341633576536 2 end format %tm monthly_date
Edit: I did also the command testparm and the results for i.xname was 0.832 and i.monthly_date = 0 which indicates that time fixed effects is needed in the regression
0 Response to Mixed Results LM-Test and Hausman-Test
Post a Comment