I am new to Stata Forum. I am not much familiar with GMM estimation using xtabond2 however, tried it using different options such as collapse, robust, year dummies and sector dummies.
Recently, i read and came to know that for estimating GMM, we should be sure about the existence of endogenity among the variables in model which can be confirmed through literature.
However, I observed that in my field, researchers are generally estimating GMM directly in their articles without mentioning about the endogenity issues.
I searched and found that we can test endogenity among the variables using ivregress 2sls command. I found 2 ways but do not know which one is correct. Therefore, I need help.
I am using below variables;
Dependent variables - ROA
Independent variables - ACP, ICP, APP ONWC
Control variables, FS, DR
I assume that ACP is independent variable, ICP is my endogenous variable and APP, ONWC, FS and TDTA are my instrumental variables
Estimation Procedure;
First, i run the command
ivregress 2sls
Second,
estat endogentiy
estat firststage
Code:
. ivregress 2sls ROA ACP (ICP = APP ONWC FS TDTA) Instrumental variables (2SLS) regression Number of obs = 1040 Wald chi2(2) = 75.04 Prob > chi2 = 0.0000 R-squared = . Root MSE = .13991 ------------------------------------------------------------------------------ ROA | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- ICP | .0007183 .0000992 7.24 0.000 .000524 .0009127 ACP | -.0004456 .0000555 -8.03 0.000 -.0005544 -.0003368 _cons | .0132083 .010531 1.25 0.210 -.007432 .0338487 ------------------------------------------------------------------------------ Instrumented: ICP Instruments: ACP APP ONWC FS TDTA . estat endog Tests of endogeneity Ho: variables are exogenous Durbin (score) chi2(1) = 93.2008 (p = 0.0000) Wu-Hausman F(1,1036) = 101.982 (p = 0.0000) . estat firststage First-stage regression summary statistics -------------------------------------------------------------------------- | Adjusted Partial Variable | R-sq. R-sq. R-sq. F(4,1034) Prob > F -------------+------------------------------------------------------------ ICP | 0.1889 0.1850 0.1361 40.71 0.0000 -------------------------------------------------------------------------- Minimum eigenvalue statistic = 40.71 Critical Values # of endogenous regressors: 1 Ho: Instruments are weak # of excluded instruments: 4 --------------------------------------------------------------------- | 5% 10% 20% 30% 2SLS relative bias | 16.85 10.27 6.71 5.34 -----------------------------------+--------------------------------- | 10% 15% 20% 25% 2SLS Size of nominal 5% Wald test | 24.58 13.96 10.26 8.31 LIML Size of nominal 5% Wald test | 5.44 3.87 3.30 2.98 ---------------------------------------------------------------------
However, in another method, by using lags of ICP, results are different
Code
Code:
. ivregress 2sls ROA ACP APP ONWC FS TDTA (ICP = ICP_01) Instrumental variables (2SLS) regression Number of obs = 1039 Wald chi2(6) = 241.39 Prob > chi2 = 0.0000 R-squared = 0.1904 Root MSE = .10224 ------------------------------------------------------------------------------ ROA | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- ICP | -.0001331 .0000441 -3.02 0.003 -.0002195 -.0000466 ACP | -.0000327 .0000429 -0.76 0.445 -.0001168 .0000513 APP | -.0001001 .0000495 -2.02 0.043 -.0001972 -3.03e-06 ONWC | .2484759 .0238135 10.43 0.000 .2018023 .2951495 FS | .0154282 .002339 6.60 0.000 .0108438 .0200125 TDTA | .0131924 .0246532 0.54 0.593 -.035127 .0615117 _cons | -.1584281 .0315125 -5.03 0.000 -.2201915 -.0966646 ------------------------------------------------------------------------------ Instrumented: ICP Instruments: ACP APP ONWC FS TDTA ICP_01 . estat endog Tests of endogeneity Ho: variables are exogenous Durbin (score) chi2(1) = .744985 (p = 0.3881) Wu-Hausman F(1,1031) = .739779 (p = 0.3899) . estat firststage First-stage regression summary statistics -------------------------------------------------------------------------- | Adjusted Partial Variable | R-sq. R-sq. R-sq. F(1,1032) Prob > F -------------+------------------------------------------------------------ ICP | 0.5358 0.5331 0.4264 767.013 0.0000 -------------------------------------------------------------------------- Minimum eigenvalue statistic = 767.013 Critical Values # of endogenous regressors: 1 Ho: Instruments are weak # of excluded instruments: 1 --------------------------------------------------------------------- | 5% 10% 20% 30% 2SLS relative bias | (not available) -----------------------------------+--------------------------------- | 10% 15% 20% 25% 2SLS Size of nominal 5% Wald test | 16.38 8.96 6.66 5.53 LIML Size of nominal 5% Wald test | 16.38 8.96 6.66 5.53 ---------------------------------------------------------------------
Please help with the below questions;
1. Which method is correct ?
2. If one is correct from above, is it sufficient to check the endogenity of all IVs one by one and run xtabond2 (difference/system) ?
Thank you
0 Response to How to estimate Endogenity
Post a Comment