Code:
lnmvnormalden(M,V,X) Description: the natural logarithm of the multivariate normal density M is the mean vector, V is the covariance matrix, and X is the random vector. Domain M: 1 x n and n x 1 vectors Domain V: n x n, positive-definite, symmetric matrices Domain X: 1 x n and n x 1 vectors Range: -8e+307 to 8e+307
Code:
lnnormalden(x,m,s) Description: the natural logarithm of the normal density with mean m and standard deviation s lnnormalden(x,0,s) = lnnormalden(x,s) and lnnormalden(x,m,s) = lnnormalden((x-m)/s) - ln(s) Domain x: -8e+307 to 8e+307 Domain m: -8e+307 to 8e+307 Domain s: 1e-323 to 8e+307 Range: 1e-323 to 8e+307
I suspect that I am misunderstanding something fundamental about lnmvnormalden and would appreciate being put right. Thanks. (Stata version 15.1 on a Windows server.)
Code:
. mkmat R S, matrix(X) . mat list X X[50,2] R S r1 9.5391407 9.4915266 r2 9.6193991 9.7069855 r3 10.415143 10.585219 r4 9.5922642 9.5764217 r5 9.4610987 9.5772448 r6 9.5327864 9.477334 r7 8.244071 7.9390125 r8 9.4064007 9.4318829 r9 9.1348619 9.1652555 r10 9.3621168 9.3593121 r11 9.6324663 9.2575293 r12 9.980217 9.9595852 r13 10.310984 10.339585 r14 9.9761333 9.931035 r15 9.5503778 9.5343771 r16 8.4362001 8.4235115 r17 8.4213428 8.4067535 r18 10.700206 10.55044 r19 9.5288668 9.4493494 r20 8.4703112 9.3805895 r21 8.1053076 8.8629341 r22 9.7116613 9.647891 r23 10.173896 9.8595171 r24 10.020025 10.067356 r25 10.999881 11.042206 r26 10.408376 10.587072 r27 9.3610849 9.3850803 r28 10.240103 10.201797 r29 9.7658339 9.614254 r30 9.3755159 9.4409666 r31 9.8051577 9.865303 r32 8.1886892 8.1493082 r33 9.2007952 9.1513138 r34 8.4523344 9.4964209 r35 8.7395363 8.7519808 r36 9.8634462 9.9078016 r37 8.7152243 8.5628929 r38 9.9405422 9.9521141 r39 9.8146019 9.8067474 r40 9.9920931 10.283386 r41 10.207658 10.085143 r42 10.494436 10.502324 r43 9.5510178 8.7480259 r44 8.7528973 8.5524721 r45 10.170954 10.15915 r46 9.9867716 10.123063 r47 9.8254719 9.8778028 r48 9.9557476 9.8533163 r49 8.8417377 9.2087393 r50 10.170341 10.035743 . . matrix Y = (10.170341 , 10.035743) // last row of X . mat list Y Y[1,2] c1 c2 r1 10.170341 10.035743 . . matrix M = (9.8 , 9.8) . mat list M M[1,2] c1 c2 r1 9.8 9.8 . . scalar v11 = .6 . scalar v22 = (1-.4)^2*(.6)^2 + (.3)^2 . scalar v12 = ((1-.4)^2*(.6)^2)/( .6* sqrt( (1-.4)^2*(.6)^2 + (.3)^2 ) ) . matrix V = (v11, v12 \ v12, v22) . mat list V symmetric V[2,2] c1 c2 r1 .6 r2 .46093277 .2196 . . mat dir V[2,2] M[1,2] Y[1,2] X[50,2] . . gen v1 = normalden(R, 9.8, .6) . su v1 Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- v1 | 50 .4439967 .2291873 .0123145 .6648793 . . ge v2 = lnnormalden(R, 9.8, .6) . su v2 Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- v2 | 50 -1.141031 1.069473 -4.396977 -.4081499 . . ge v3 = lnmvnormalden(M, V, X) (50 missing values generated) . su v3 Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- v3 | 0 . . ge v4 = lnmvnormalden(M, V, Y) (50 missing values generated) . su v4 Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- v4 | 0
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float(R S) 9.539141 9.491527 9.619399 9.706985 10.415143 10.58522 9.592264 9.576422 9.461099 9.577245 9.532786 9.477334 8.244071 7.939013 9.406401 9.431883 9.134862 9.165256 9.362117 9.359312 9.632466 9.257529 9.980217 9.959585 10.310984 10.339585 9.976133 9.931035 9.550378 9.534377 8.4362 8.4235115 8.421343 8.406754 10.700206 10.55044 9.528867 9.449349 8.470311 9.3805895 8.105308 8.862934 9.711661 9.647891 10.173896 9.859517 10.020025 10.067356 10.99988 11.042206 10.408376 10.587072 9.361085 9.38508 10.240103 10.201797 9.765834 9.614254 9.375516 9.440967 9.805158 9.865303 8.188689 8.149308 9.200795 9.151314 8.452334 9.496421 8.739536 8.751981 9.863446 9.907802 8.715224 8.562893 9.940542 9.952114 9.814602 9.806747 9.992093 10.283386 10.207658 10.085143 10.494436 10.502324 9.551018 8.748026 8.752897 8.552472 10.170954 10.15915 9.986772 10.123063 9.825472 9.877803 9.955748 9.853316 8.841738 9.208739 10.170341 10.035743 end
0 Response to How to use lnmvnormalden(M,V,X) function (natural logarithm of the multivariate normal density)?
Post a Comment