Code:
xtset region year, delta(4)
Then I checked for endogeneity using the regression test by Wooldridge and found out it is wealth is endogenous. In my data, wealth and education are highly correlated (0.8) but I don't know yet how to test jointly if both are endogenous. Also, instead of using enrollment rate, I am using mean of household head's education as proxy variable. Then I have an interaction term where I interacted inequality with wealth (I did this manually multiply them
Code:
gen ginixwealth=gini*wealth
Then, I run my G2SLS IV random effects regression with and without year dummies. This is based on the Hausman fe vs re test.
Code:
. xtivreg lifeexp gini ginixwealth education urbanization doctordensity econbudget socialbudget (wealt > h=lag_wealth1), re vce(robust) G2SLS random-effects IV regression Number of obs = 290 Group variable: region1 Number of groups = 76 R-sq: Obs per group: within = 0.4902 min = 3 between = 0.5725 avg = 3.8 overall = 0.5438 max = 4 Wald chi2(8) = 396.18 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 (Std. Err. adjusted for 76 clusters in province1) ------------------------------------------------------------------------------ | Robust lifeexp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- wealth | 9.02e-06 .0000274 0.33 0.742 -.0000447 .0000627 gini | -.093408 .0146482 -6.38 0.000 -.122118 -.0646979 ginixwealth | -6.24e-08 4.70e-07 -0.13 0.894 -9.84e-07 8.60e-07 education | .9834762 .2699046 3.64 0.000 .4544729 1.51248 urbanization | -.0147435 .0089642 -1.64 0.100 -.032313 .0028259 doctordensity | -17.16256 7.629362 -2.25 0.024 -32.11584 -2.20929 econbudget | .0151777 .0123215 1.23 0.218 -.008972 .0393275 socialbudget | .019107 .010045 1.90 0.057 -.0005809 .0387948 _cons | 64.00818 2.213286 28.92 0.000 59.67022 68.34614 -------------+---------------------------------------------------------------- sigma_u | 2.3424085 sigma_e | 2.5574487 rho | .45619732 (fraction of variance due to u_i) ------------------------------------------------------------------------------ Instrumented: wealth Instruments: gini ginixwealth educ urban doctor econbudget socialbudget lag_wealth1 ------------------------------------------------------------------------------ . xtivreg lifeexp gini ginixwealth education urbanization doctordensity econbudget socialbudget (wealt > h=lag_wealth1) i.year, re vce(robust) G2SLS random-effects IV regression Number of obs = 290 Group variable: region1 Number of groups = 76 R-sq: Obs per group: within = 0.9623 min = 3 between = 0.2282 avg = 3.8 overall = 0.4021 max = 4 Wald chi2(11) = 3432.22 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 (Std. Err. adjusted for 76 clusters in province1) ------------------------------------------------------------------------------ | Robust lifeexp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- wealth | -6.87e-06 .0000187 -0.37 0.713 -.0000435 .0000297 gini | .0014845 .0069483 0.21 0.831 -.0121338 .0151029 ginixwealth | 4.24e-07 2.53e-07 1.68 0.093 -7.08e-08 9.19e-07 education | -.0465661 .1583917 -0.29 0.769 -.3570081 .2638758 urbanization | .0038474 .002319 1.66 0.097 -.0006977 .0083925 doctordensity | 1.494077 2.478137 0.60 0.547 -3.362981 6.351135 econbudget | .004155 .0037391 1.11 0.266 -.0031734 .0114834 socialbudget | .0034093 .0030565 1.12 0.265 -.0025813 .0094 | year | 2008 | 1.906733 .07849 24.29 0.000 1.752895 2.060571 2013 | 3.522017 .1118214 31.50 0.000 3.302851 3.741183 2017 | 4.85928 .1687632 28.79 0.000 4.52851 5.19005 | _cons | 66.51479 1.181323 56.31 0.000 64.19944 68.83014 -------------+---------------------------------------------------------------- sigma_u | 2.51575 sigma_e | .62218199 rho | .9423609 (fraction of variance due to u_i) ------------------------------------------------------------------------------ Instrumented: wealth Instruments: gini ginixwealth education urbanization doctordensity econbudget socialbudget 2008.year 2013.year 2017.year lag_wealth1 ------------------------------------------------------------------------------ .
0 Response to Panel Data IV Year Dummies
Post a Comment