I am trying to fit a linear regression model (Stata 15.0) with 5 different exposure variables (in the same model) and some covariates. The model looks like this:
Code:
-> regress PCT_5mC logAs logHg logMn logPb logCd i.Sex i.Parity i.Maternal_edu Source | SS df MS Number of obs = 631 -------------+---------------------------------- F(8, 622) = 4.84 Model | .357290237 8 .04466128 Prob > F = 0.0000 Residual | 5.74385813 622 .009234499 R-squared = 0.0586 -------------+---------------------------------- Adj R-squared = 0.0465 Total | 6.10114836 630 .009684362 Root MSE = .0961 ------------------------------------------------------------------------------ PCT_5mC | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logAs | .0106746 .0049339 2.16 0.031 .0009856 .0203637 logHg | -.0142802 .0071945 -1.98 0.048 -.0284086 -.0001519 logMn | -.0002981 .009837 -0.03 0.976 -.0196158 .0190196 logPb | -.0097966 .0091545 -1.07 0.285 -.027774 .0081809 logCd | .0087327 .0055965 1.56 0.119 -.0022577 .0197231 | Sex | Boy | -.0409371 .007703 -5.31 0.000 -.056064 -.0258101 | Parity | 1+ | .0167926 .0124899 1.34 0.179 -.0077349 .0413201 | Maternal_edu | =<12 years | .0078305 .0091661 0.85 0.393 -.0101698 .0258307 _cons | 3.703645 .0315254 117.48 0.000 3.641736 3.765554 ------------------------------------------------------------------------------
Code:
Variable | VIF 1/VIF -------------+---------------------- logAs | 1.54 0.647819 logHg | 1.59 0.628908 logMn | 1.02 0.976892 logPb | 1.14 0.880986 logCd | 1.11 0.899054 1.Sex | 1.01 0.988661 1.Parity | 1.02 0.975679 1.Maternal~u | 1.05 0.948319 -------------+---------------------- Mean VIF | 1.19
Code:
-> regress PCT_5mC logAs logMn logPb logCd i.Sex i.Parity i.Maternal_edu Source | SS df MS Number of obs = 631 -------------+---------------------------------- F(7, 623) = 4.94 Model | .320908086 7 .045844012 Prob > F = 0.0000 Residual | 5.78024028 623 .009278074 R-squared = 0.0526 -------------+---------------------------------- Adj R-squared = 0.0420 Total | 6.10114836 630 .009684362 Root MSE = .09632 ------------------------------------------------------------------------------ PCT_5mC | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logAs | .0051144 .0040711 1.26 0.209 -.0028803 .013109 logMn | .0009909 .0098387 0.10 0.920 -.0183301 .0203118 logPb | -.0125702 .0090685 -1.39 0.166 -.0303787 .0052384 logCd | .0086075 .0056094 1.53 0.125 -.002408 .019623 | Sex | Boy | -.0400819 .007709 -5.20 0.000 -.0552207 -.0249431 | Parity | 1+ | .0158463 .0125102 1.27 0.206 -.008721 .0404136 | Maternal_edu | =<12 years | .0060554 .0091439 0.66 0.508 -.0119011 .024012 _cons | 3.706495 .0315669 117.42 0.000 3.644505 3.768486 ------------------------------------------------------------------------------
Should I be concerned, or can I trust my findings, regarding logAs and logHg?
Best,
Kjell
0 Response to Is collinearity a problem here?
Post a Comment