I am trying to fit a linear regression model (Stata 15.0) with 5 different exposure variables (in the same model) and some covariates. The model looks like this:
Code:
-> regress PCT_5mC logAs logHg logMn logPb logCd i.Sex i.Parity i.Maternal_edu
Source | SS df MS Number of obs = 631
-------------+---------------------------------- F(8, 622) = 4.84
Model | .357290237 8 .04466128 Prob > F = 0.0000
Residual | 5.74385813 622 .009234499 R-squared = 0.0586
-------------+---------------------------------- Adj R-squared = 0.0465
Total | 6.10114836 630 .009684362 Root MSE = .0961
------------------------------------------------------------------------------
PCT_5mC | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
logAs | .0106746 .0049339 2.16 0.031 .0009856 .0203637
logHg | -.0142802 .0071945 -1.98 0.048 -.0284086 -.0001519
logMn | -.0002981 .009837 -0.03 0.976 -.0196158 .0190196
logPb | -.0097966 .0091545 -1.07 0.285 -.027774 .0081809
logCd | .0087327 .0055965 1.56 0.119 -.0022577 .0197231
|
Sex |
Boy | -.0409371 .007703 -5.31 0.000 -.056064 -.0258101
|
Parity |
1+ | .0167926 .0124899 1.34 0.179 -.0077349 .0413201
|
Maternal_edu |
=<12 years | .0078305 .0091661 0.85 0.393 -.0101698 .0258307
_cons | 3.703645 .0315254 117.48 0.000 3.641736 3.765554
------------------------------------------------------------------------------
Code:
Variable | VIF 1/VIF
-------------+----------------------
logAs | 1.54 0.647819
logHg | 1.59 0.628908
logMn | 1.02 0.976892
logPb | 1.14 0.880986
logCd | 1.11 0.899054
1.Sex | 1.01 0.988661
1.Parity | 1.02 0.975679
1.Maternal~u | 1.05 0.948319
-------------+----------------------
Mean VIF | 1.19
Code:
-> regress PCT_5mC logAs logMn logPb logCd i.Sex i.Parity i.Maternal_edu
Source | SS df MS Number of obs = 631
-------------+---------------------------------- F(7, 623) = 4.94
Model | .320908086 7 .045844012 Prob > F = 0.0000
Residual | 5.78024028 623 .009278074 R-squared = 0.0526
-------------+---------------------------------- Adj R-squared = 0.0420
Total | 6.10114836 630 .009684362 Root MSE = .09632
------------------------------------------------------------------------------
PCT_5mC | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
logAs | .0051144 .0040711 1.26 0.209 -.0028803 .013109
logMn | .0009909 .0098387 0.10 0.920 -.0183301 .0203118
logPb | -.0125702 .0090685 -1.39 0.166 -.0303787 .0052384
logCd | .0086075 .0056094 1.53 0.125 -.002408 .019623
|
Sex |
Boy | -.0400819 .007709 -5.20 0.000 -.0552207 -.0249431
|
Parity |
1+ | .0158463 .0125102 1.27 0.206 -.008721 .0404136
|
Maternal_edu |
=<12 years | .0060554 .0091439 0.66 0.508 -.0119011 .024012
_cons | 3.706495 .0315669 117.42 0.000 3.644505 3.768486
------------------------------------------------------------------------------
Should I be concerned, or can I trust my findings, regarding logAs and logHg?
Best,
Kjell
0 Response to Is collinearity a problem here?
Post a Comment