We are investigating the longitudinal association between FTO SNP and BMI. We have repeated measure from the same individuals at age 15, 18 and 25 years. How can I adjust my model for daily energy intake and physical activity score? They are both continuous variables.
My model currently looks like this:
Code:
mixed BMI c.time i.FTO if sex==1 || kood: aeg, reml cov(unstructured) Performing EM optimization: Performing gradient-based optimization: Iteration 0: log restricted-likelihood = -2970.1662 Iteration 1: log restricted-likelihood = -2969.6672 Iteration 2: log restricted-likelihood = -2968.7511 Iteration 3: log restricted-likelihood = -2968.7497 Iteration 4: log restricted-likelihood = -2968.7497 Computing standard errors: Mixed-effects REML regression Number of obs = 1,284 Group variable: kood Number of groups = 545 Obs per group: min = 1 avg = 2.4 max = 3 Wald chi2(3) = 1276.54 Log restricted-likelihood = -2968.7497 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ BMI | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- time | .4551195 .0127798 35.61 0.000 .4300715 .4801675 | FTO | 2 | .7402651 .2758039 2.68 0.007 .1996994 1.280831 3 | .8363359 .344866 2.43 0.015 .1604111 1.512261 | _cons | 13.25358 .2945753 44.99 0.000 12.67622 13.83093 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ kood: Unstructured | var(aeg) | .0293513 .0057656 .019972 .0431352 var(_cons) | 8.557252 2.078842 5.315561 13.77589 cov(aeg,_cons) | -.2978246 .1025787 -.4988752 -.0967741 -----------------------------+------------------------------------------------ var(Residual) | 1.94703 .1534048 1.668427 2.272156 ------------------------------------------------------------------------------ LR test vs. linear model: chi2(3) = 713.17 Prob > chi2 = 0.0000
Urmeli
0 Response to adjusting in mixed multilevel linear regression
Post a Comment